### **INSTALLATION MANUAL** ### **Daikin Altherma outdoor unit** EMRQ8AAY1 EMRQ10AAY1 EMRQ12AAY1 EMRQ14AAY1 EMRQ16AAY1 CE - DECLARATION-OF-CONFORMITY CE - KONFORMITÄTSERKLÄRUNG CE - DECLARATION-DE-CONFORMITE CE - CONFORMITEITSVERKLARING $\dot{\Theta}\dot{\Theta}\dot{\Theta}$ - DECLARACION-DE-CONFORMIDAD - DICHIARAZIONE-DI-CONFORMITA - ΔΗΛΩΣΗ ΣΥΜΜΟΡΦΩΣΗΣ CE - DECLARAÇÃO-DE-CONFORMIDADE CE - 3ARBJIEHÍNE-O-COOTBETCTBUN CE - OPFYLDELSESERKLÆRING CE - FORSÄKRAN-OM-ÖVERENSTÄMMELSE CE - ERKLÆRING OM-SAMSVAR CE - ILMOITUS-YHDENMUKAISUUDESTA CE - PROHLÁŠENÍ-O-SHODĚ CE - IZJAVA-O-USKLAĐENOSTI CE - MEGFELELŐSÉGI-NYILATKOZAT CE - DEKLARACJA-ZGODNOŚCI CE - DECLARAŢIE-DE-CONFORMITATE CE - IZJAVA O SKLADNOSTI CE - VASTAVUSDEKLARATSIOON CE - ДЕКЛАРАЦИЯ-3A-CЪOTBETCTBИE CE - ATTIKTIES-DEKLARACIJA CE - ATBIL STIBAS-DEKLARĀCIJA CE - VYHLÁSENIE-ZHODY CE - UYUMLULUK-BILDIRISI ### Daikin Europe N.V. 02 (D) erklärt auf seine alleinige Verantwortung, dass die Ausrüstung für die diese Erklärung bestimmt ist: 01 (GB) declares under its sole responsibility that the equipment to which this declaration relates: 04 (NL) verklaart hierbij op eigen exclusieve verantwoordelijkheid dat de apparatuur waarop deze verklaring betrekking heeft: 07 (GR) δηλώνει με αποκλειστική της ευθύνη ότι ο εξοπλισμός στον οπαίο αναφέρεται η παρούσα δήλωση: 08 (P) declara sob sua exclusiva responsabilidade que os equipamentos a que esta declaração se refere: 06 (T) dichiara sotto la propria responsabilità che gli apparecchi a cui è riferita questa dichiarazione: 05 (E) declara bajo su única responsabilidad que el equipo al que hace referencia la declaración: 03 (F) déclare sous sa seule responsabilité que l'équipement visé par la présente déclaration: 99 (выз.) заявляет, исключительно под свою ответственность, что оборудование, к которому относится настоящее заявление: 10 (DK) erklærer som eneansvarlig, at udstyret, som er omfattet af denne erklæring: 11 (S) deklarerar i egenskap av huvudansvarig, att utrustningen som berörs av denna deklaration innebår att: 12 (N) erklærer et fullstendig ansvar for at det utstyr som berøres av denne deklarasjon, innebærer at: 14 CZ) prohlašuje ve své plné odpovědnosti, že zařízení, k němuž se toto prohlášení vztahuje: 13 (FiN) ilmoittaa yksinomaan omalla vastuullaan, että tämän ilmoituksen tarkoittamat laitteet: 15 (m) izjavluje pod isključivo vlastlom odgovomošću da oprema na koju se ova izjava odnosi: 16 (H) teljes feletišssege tudalaban kjelemi, hogy a berendezásek, melyekre e nyilatkozat vonatkozik 17 (PL) deklaruje na własną wyłączną odpowiedzialność, że urządzenia, których ta deklaracja dotyczy: 18 (RO) declară pe proprie răspundere că echipamentele la care se referă această declarație: 20 (Est) kinnitab oma täielikul vastutusel, et käesoleva deklaratsiooni alla kuuluv varustus: 19 (sue) z vso odgovomostjo izjavlja, da je oprema naprav, na katero se izjava nanaša: 21 (вс) декларира на своя отговорност, че оборудването, за което се отнася тази декларация: 22 (LT) visiška savo atsakomybe skelbia, kad įranga, kuriai taikoma ši deklaracija: 23 (LV) ar pilnu atbikību apliecina, ka tālāk aprakstītās iekārtas, uz kurām attiecas šī deklarācija: 25 (тв) tamamen kendi sorumluluğunda olmak üzere bu bildirinin ilgili olduğu donanımının aşağıdaki gibi olduğunu beyan eder: 24 (SR) vyhlasuje na vlastnú zodpovednosť, že zariadenie, na ktoré sa vzťahuje toto vyhlásenie: ## EMRQ8AAY1\*, EMRQ10AAY1\*, EMRQ12AAY1\*, EMRQ14AAY1\*, EMRQ16AAY1\*, 01 are in conformity with the following standard(s) or other normative document(s), provided that these are used in accordance with our instructions: Normdokument oder -dokumenten entspricht/entsprechen, unter der Voraussetzung, daß sie gemäß unseren Anweisungen 02 der/den folgenden Norm(en) oder einem anderen eingesetzt werden: normatif(s), pour autant qu'ils soient utilisés conformément à 03 sont conformes à la/aux norme(s) ou autre(s) document(s) 04 conform de volgende norm(en) of één of meer andere bindende documenten zijn, op voorwaarde dat ze worden gebruikt 06 sono conformi al(i) seguente(i) standard(s) o altro(i) documento(i) a carattere normativo, a patto che vengano usati in 05 están en conformidad con la(s) siguiente(s) norma(s) u otro(s) documento(s) normativo(s), siempre que sean utilizados de acuerdo con nuestras instrucciones: overeenkomstig onze instructies: conformità alle nostre istruzioni: согласно нашим инструкциям: στοιοτίπτα παι ποιαν εκτυλοπ. εγγραφοία) κανονισμών, υπό την προϋπόθεση ότι χρησιμοποιούνται σύμφωνα με της οδηγίες μας: нормативным документам, при условии их использования 08 estão em conformidade com a(s) seguinte(s) norma(s) ou outro(s) documento(s) normativo(s), desde que estes sejam utilizados de acordo com as nossas instruções: 09 соответствуют следующим стандартам или другим ohjeidemme mukaisesti: 10 overholder følgende ståndard(er), eller andet/andre retningsgivende dokument(er), forudsat at disse anvendes i henhold til vore instrukser: 11 respektivo ur voj interanceo: fojjer fojjande standardjen jeller andra normgivande dokument, under fojfutisattning att användning sker i överensstämmelse med våra instruktioner: 12 respektive utstyr er i overensstemmelse med følgende standard(er) eller andre normgivende dokument(er), under forutssetning av at disse brukes i henhold til våre instrukser: dokumenttien vaatimuksia edellyttäen, että niitä käytetään 13 vastaavat seuraavien standardien ja muiden ohjeellisten 14 za předpokladu, že jsou využívány v souladu s našími pokyny, odpovídaji následujícím normám nebo normatívním dokumentúm: 15 u skladu sa slijedećim standardom(ima) ili drugim nomativnim dokumentom(ima), uz uvjet da se oni koriste u skladu s našim 16 megfelelnek az alábbi szabványlok)nak vagy egyéb irányadó odkumentuníkolhak, ha azakat előírás szemíth aszráják. 17 spehiaja wymogi nastepujących nomi innych dokumentów normalizacyjnych, pod warunkiem że używane są zgodnie z 19 skladni z naslednjimi standardi in drugimi normativi, pod pogojem, da se uporabljen v skladu z našimi navodii: 20 on vastavuses jāgmistlje standarditelga või tieste normatiivsele okulmandidega, kul neldi kasutatakse vastavalt používajú v súlade s naším návodóm: 25 űrűnűn, talimattarm:za göre kullanılmasi kosuluyla asağıdaki 24 sú v zhode s nasledovnou(ými) nomou(ami) alebo iným(i) normatívnym(i) dokumentom(ami), za predpokladu, že sa standartlar ve norm belirten belgelerle uyumludur: 21 Директиви, с техните изменения. 20 Direktiivid koos muudatustega. 22 Direktyvose su papildymais. Direktivejä, sellaisina kuin ne ovat muutettuina. 23 Direktīvās un to papildinājumos. 24 Smernice, v platnom znení. > Electromagnetic Compatibility 2004/108/EC Low Voltage 2006/95/EC > > 23 ievērojot prasības, kas noteiktas: 22 laikantis nuostatų, pateikiamų: 21 следвайки клаузите на: 19 ob upoštevaniu določb: 10 under iagttagelse af bestemmelserne i: 11 enligt villkoren i: 12 gitt i henhold til bestemmelsene i: 14 za dodržení ustanovení předpisu: 13 noudattaen määräyksiä: > 03 conformément aux stipulations des: 04 overeenkomstig de bepalingen van: 02 gemäß den Vorschriften der: 01 following the provisions of: EN60335-2-40. 05 siguiendo las disposiciones de: 06 secondo le prescrizioni per: 20 vastavalt nõuetele: 25 bunun koşullarına uygun olarak: 17 zgodnie z postanowieniami Dyrektyw: 15 prema odredbama: 16 követi a(z): 18 în urma prevederilor: 09 в соответствии с положениями: 07 με τήρηση των διατάξεων των: 08 de acordo com o previsto em: 24 održiavajúc ustanovenia: \* Pressure Equipment 97/23/EC 16\*a(z) <4> ataján, a(z) <4> igazolta a megfelelést, a(z) <C> tanústvány szemt. \*\*a(z) <D> miszak konstrukciós dokumentáció akapján, a(z) <E> igazotta a \*\*a(z) < megfelelést (alkalmazott modul: <F>) <G>. Veszélyességi kategória <H>. Lásd még a következő oldalon. 11 \*enligt <A> och godkänts av <B> enligt Certifikatet <C>. \*\*\* i i enlighet med den Tekniska Konstruktionsfilen <D> som positivt intygats av <E> (Fastsatt modul <F>). <G>. Riskkategori <H>. 12 \*som det fremkommer i <A> og gjennom positiv bedømmelse av <B> ifølge Ser tiffikat <C>. \*\* som det fremkommer i den Tekniske Konstruksjonsfilen <D> og gjennom Se även nästa sida. \* delineato nel File Tecnico di Costruzione <D> e giudicato positivamente 06 \*delineato nel <A> e giudicato positivamente da <B> secondo il Certificato <C>. positiv bedømmelse av < E> (Arwendt modul < F>). < C>. ούμφωνα με το **Ποτοποιητικό «C»**. \*\* σύπως τροσδοράζετα στο Αρχείο Γεχνικής Κατασκευής A» και κρίνετα θετικά από το A». (Αργομοποιούμενη υπομονάδα A>). A>. 07\*όπως καθορίζεται στο <Α> και κρίνεται θετικά από το <Β> positively by <E> (Applied module <F>). <G>. Risk category <H>. 01\*as set out in <A> and judged positively by <B> according to the Certificate <C>. \*\*as set out in the Technical Construction File <D> and judged 02 \*wie in der <A> aufgeführt und von <B> positiv beurteilt gemäß Also refer to next page. Zertifikat <C>. 08 \*tal como estabelecido em <A> e com o parecer positivo de <B> de acordo com o Certificado <C>. Ανατρέξτε επίσης στην επόμενη σελίδα. Κατηγορία επικινδυνότητας <Η>. von < E> (Angewandtes Modul < F>) positiv ausgezeichnet gemäß. < G>. Risikoart < H>. Siehe auch nächste Seite. \*\* wie in der Technischen Konstruktionsakte <D> aufgeführt und \* tal como estabelecido no Ficheiro Técnico de Construção <D> e com o parecer positivo de <a>C (Módulo aplicado <a>C). <a>C</a>. Categoria de risco <a>C Consultar também a página seguinte. Catégorie de risque <H>. Se reporter également à la page suivante. 04 \*zoals vermeld in <A> en positief beoondeeld door <B> \*\* zoals vermeld in het Technisch Constructiedossier <D> en in orde overeenkomstig Certificaat < C>. oonformément au **Certificat <C>** \*\* tel que stipulé dans le Fichier de Construction Technique **<D>** et jugé positivement par <E> (Module appliqué <F>). <G>. 03 \*tel que défini dans <A> et évalué positivement par <B> 13 \*jotka on esitetty asiakirjassa < A> ja jotka < B> Risikokategori < H>. Se også neste side. \*\* zgodnie z archiwalną dokumentacją konstrukcyjną <D> i pozytywną opinią <E> (Zastosowany moduł <F>). <G>. Kategoria zagrożenia <H>. Patrz także nasłępna strona. 17\*zgodnie z dokumentacją <A>, pozytywną opinią <B> i Świadectwem <C>. 18 \*spa oum este stabili în <A> şi apreciat pozitiv de <B> in conformitate cu Certificatul <C>. \*\*conformitate cu Cartificatul in conformitate cu Certificatul in conformitate cu Certificatul in Cosarul tehnic de construcție <D> şi apreciate on hyväksynyl Sertiffkatin <6> mukaisesti. \*\*jotka on esiteity Teknisessä Asiakirjassa <0> ja jotka <6> on hyväksynyl (Sovelleitu modul <6>) <6> Vaaraluokka <40> pozitiv de <E> (Modul aplicat <F>). <G>. Categorie de risc <H>. Consultați de asemenea pagina următoare. 19 \*kot je določeno v <A> in odobreno s strani <B> v skladu \*\* kot je določeno v tehnični mapi <D> in odobreno s strani <E> (Uporabljen modul <F>). <G>. s certifikatom <C>. \* jak bylo uvedeno v souboru technické konstrukce <D> a pozitivně 14 \* jak bylo uvedeno v <A> a pozitívně zjištěno <B> v souladu s osvědčením <C>. zjištěno <E> (použitý modul <F>). <G>. Kategorie rizik <H>. Katso myös seuraava sivu. Víz také následující strana. 15 \*kako je izloženo u <A> i pozitívno odjenjeno od strane <B> решением **<B>** согласно **Свидетельству <C>**. \* как указано в Досъе технического толкования **<**D> и в соответствии с 09 \*как указано в <A> и в соответствии с положительным Категория риска <Н>. Также смотрите следующую страницу. 05 \*como se establece en <A> y es valorado positivamente por <B> de acuerdo con el **Certificado <C>.** \*\* tal como se expone en el Archivo de Construcción Técnica <**D**⊳ y juzgado bevonden door <E> (Toegepaste module <F>). <G>. Risicocategorie < H - Zie ook de volgende pagina. positivamente por <E> (Modulo aplicado <F>). <G>. Categoría de riesco <H>. Consulte también la siquiente páqina. 10 \*som anført i <A> og positivt vurderet af <B> i henhold til Certifikat <C>. положительным решением <E> (Прикладной модуль <F>). <G>. 20\*nagu on naidatud dokumendis <A> ja heaks kiidetud <B> jargi vastavalt sertifikaadile <C> Kategorija tveganja <H>. Glejte tudi na naslednji strani. "nagu on näidatud tehnilises obkumentatsioonis D ja heaks kiidetud E järgi (lisamoodul <P). <p>R skiikategooria <P.</p> /aadake ka järgmist lehekülge prema Certifikatu <C> - "Vako ja Cikača u Dakobe o tehničkoj konstrukcij <D-i pozitivno ocjenjeno od strane <E-{Primijenjen modul <P-}, <6>. Rategorija opasnosti <P->. Ratedorija popasnosti <P->. Ratedorija popasnosti <P->. Ratedorija popasnosti <P->. Također pogledajle na siljedećoj stranici. \* som anført i den Tekniske Konstruktionsfil <D> og positivt vurderet af CE> (Arvendt modul <F>). <G>. Risikoklasse <H>. Se også næste side. 21 съответстват на следните стандарти или други нормативни документи, при условие, че се използват съгласно нашите инструкции: 22 atitinka žemiau nurodytus standartus ir (arba) kitus norminius > 18 sunt în conformitate cu umătorul (următoarele) standard(e) sau alt(e) document(e) normativ(e), cu condiția ca acestea să fie utilizate în conformitate cu instrucțiunile noastre: naszymi instrukcjami: 23 tad, ja lietoti atbilstoši ražotāja norādījumiem, atbilst sekojošiem standartiem un citiem normatīviem dokumentiem: dokumentus su salyga, kad yra naudojami pagal mūsų meie iuhenditele: 19 Direktive z vsemi spremembami. 10 Direktiver, med senere ændringer. 12 Direktiver, med foretatte endringer. 11 Direktiv, med företagna ändringar. 25 Değiştirilmiş halleriyle Yönetmelikler. 16 irányelv(ek) és módosításaik rendelkezéseit. 21 \*както е изложено в <A> и оценено положително от <B> сълзасно Сертификата <C>. 18 Directivelor, cu amendamentele respective 15 Smjernice, kako je izmijenjeno. 17 z późniejszymi poprawkami. 07 Οδηγιών, όπως έχουν τροποποιηθεί. 08 Directivas, conforme alteração em. 09 Директив со всеми поправками. 14 v platném znění. 05 Directivas, según lo enmendado. 03 Directives, telles que modifiées. 04 Richtlijnen, zoals geamendeerd. 02 Direktiven, gemäß Änderung. 01 Directives, as amended. 06 Direttive, come da modifica. \*\* както е запожено в Акта за техническа конструкция <D> и оценено Категория риск <Н>. Вижте също на следващата страница. положително от <E> (Приложен модул <F>). <G>. pagal Sertifikatą <C> \*\* kaip nurodyta Techninėje konstrukcijos byloje <D> ir patvirtinta <E> \*\*\* kaip nurodyta Techninėje konstrukcijos byloje <D> ir patvirtinta <E> 22 \*kaip nustatyta < A> ir kaip teigiamai nuspręsta < B> 23 \*kkā norādīts <A> un atbilstoši <B> pozitīvajam vērtējumam saskaņā (taikomas modulis <F>), <6. Rizikos kategorija <H>. Taip pat žiūrėkite ir kitą puslapį. ar sertifikātu <C> \*\* kā noteiks tehniskajā dokumentācijā <D>, atbilstoši <E> pozitī≀ajam ēmumam (piekritīgā sadaļa: <F>). <G>. Riska kategorija <H>. Skat. arī nākošo lappusi. \*\* ako je to stanovené v Súbore technickej konštrukcie <D> a kladne 24 \*ako bolo uvedené v <A> a pozitívne zistené <B> v súlade posúdené <E> (Aplikovaný modul <F>). <G>. s osvedčením <C>. 25 \* < A> da belirtildiği gibi ve < C> Sertifikasına göre < B> tarafından olumlu olarak değerlendirildiği gibi. Kategória nebezpečia <H>. Viď tiež nasledovnú stranu. \* <D> Teknik Yapı Dosyasında belirtildiği gibi ve <E> tarafından olumlu olarak (Uygulanan modül <E>) değerlendirilmiştir. <G>. Risk kategorisi < H>. Avrıca bir sonraki savfava bakın. DAIKIN.TCF.024D25/04-2010 AIB Vincotte (NB0026) Daikin.TCFP.001 TÜV (NB1856) 0510260101 5 = ⟨¥⟩ Ą ô ÷ ပွဲ ŝ ê ŕ # DAIKIN EUROPE N.V. Jean-Pierre Beuselinck Ostend, 1st of June 2010 General Manager Zandvoordestraat 300, B-8400 Oostende, Belgium DAIKIN | CE - IZJAVA O SKLADNOSTI<br>CE - VASTAVUSDEKLARATSIOON<br>CE - ДЕКЛАРАЦИЯ-ЗА-CЪOTBETCTE | 19 (с.) nadaljevanje s prejšnje stani:<br>20 (св.) eelmise lehekülije järg;<br>21 (б.) продължение от предходината страница | 20 Dekkaratsiooni alla kuuluv<br>21 Проектни спецификации<br>22 Konstrukcinės speefilkac<br>23 To modelu dizaina specifi<br>24 Konštrukčinė špecifikacie<br>25 Bu bildirinin ilgili olduğu raracija: | <ol> <li>Maskamahi dovoleni tisk (PS); «A≻ (har)</li> <li>Mininardinaskismina doplenia temperatura (TS);</li> <li>TSmir. Mininardia temperatura na rizodeba istani: «4≻ (°C)</li> <li>Hadro. «A&gt;</li> <li>Hadro. «A&gt;</li> <li>Hadro. «A&gt;</li> <li>Maninardia e mroperatura, ki takraza maksimahenu dovolenemu tidau (PS); «AP (°C)</li> <li>Marinardia e mroperatura (PS); «A&gt; (kar)</li> <li>Marinardia e mroperatura (PS); «A&gt; (kar)</li> <li>TSmir. Minimardia e mroperatura (PS); «A&gt; (kar)</li> <li>Harvinsona (A)</li> <li>Sun tursesadine «A&gt;</li> <li>Sun tursesadine «A&gt;</li> <li>Sun tursesadine «A&gt;</li> <li>TSmir. Minimardia (PS); «AP (°C)</li> <li>TSmir. Minimardia (PS); «AP (°C)</li> <li>Manuschambo (Dorymon dantalea (PS); «AC (kar)</li> <li>TSmir. Minimal en meringan pa re Hadrugae, cootree crosaque na saranae. (A)</li> <li>TSmir. Minimal en meringan pa re sacratica (PS); «AP (°C)</li> <li>TSmir. Minimal en meringan pa re sacratica (PS); «AP (°C)</li> <li>TSmir. Minimal en meringan partica (PS); «P (bar)</li> <li>Adonymen kuchen y roquera an approachiza (PS); (PC)</li> <li>TSmir. Minimal inemperatura zamo sepadera nuesi; «D&gt; (°C)</li> <li>TSmir. Minimal inemperatura zama sepadera nuesi; «D&gt; (°C)</li> <li>TSmir. Minimal ine</li></ol> | ime in raskiv organa za ugulavlanje skladnosti, ki je pozitivno ocenii<br>zduzilgivnog robeko, organi organi organi organi organi organi organi organi organi inši hirdas Suneseadmeb Driektiviga tihitduvust<br>positivasti, imini a advess. 4D. Hamenouseleven organi, civir oce e<br>provisecta, imini pada et ymshoulouseleven organi, civir oce e<br>provisecta in prosevrseno orivosno ozasecta. 4D.<br>Haskingon sistualioni, suku et legania sprendiną pagjai šlėginės<br>improse drektyvą paradininas ir adress. 4D.<br>Sentifikacijas institucijas, kura ir devus pozitivu slėdzienu par<br>atbistibu Spiedera lekdru Drektina, inscankums un adrese; 4D.<br>atbistibu Spiedera lekdru Drektina, inscankums un adrese; 4D. | |------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | CE - IZJAVA-O-UŞKLADENOSTI<br>CE - MEGFELELÖSEĞI-HYILATKOZAT<br>CE - DEKLARACI-A-ZGODNOSCI<br>CE - DECLARAŢIE-DE-CONFORMITATE | iodne stranice:<br>ő oldalról:<br>przedniej strony:<br>inii anterioare: | määrittely: vatahuje toto prohläseni: ova izjava odnosi: k tervezesi jellemzői: h dotyczy deklaracja: a care se referă această decl , na katere se nanaša ta dekl | (°C) mn m | 19 sudbu 0 20 Cd> 21 Cd> 21 Sed 22 and 22 coziiiv 23 | | | 15 (HP) naslavak s prethodne stranice: 16 (H) folytatás az előző oldalról: 17 (PL) cágó dászy z poprzedniej strony: 18 (RO) continuarea pagini anlericare: | Tată ilmoftusta koskevien mallien rakennemäärittely; Specifikacie designu modelü, ke kterým se vztahuje toto prohlášeni: Specifikacije dizajna za modele na koje se ova zjava odnosi: A jelen vyltakozat ziygti ktepez omodellek tervezési jellemzői: Specyfikacje konstrukcyjne modeli, których dotyczy dekatracja: Specificaţiile de proiectare ale modelelor la care se referă această declaraţie: Specificaţiile tehničnega načrta za modele, na katere se nanaša ta deklaracija: | Najweči oppušen tak (PS): (Api veči oppušenta): (A | 14 Nizze a adresa informovareho orgánu, klerý vyda pozitivní posouzení skorý sa sterind o tlakových zařízeních: GP 16 Nizzu i adresa prija-aljenog tjela koje je donjelo pozitivnu prosudbu uškladenosti sa Sinjerničnu za lakhu opernu: GP 4 nymazistnú benednoste sek novatkozo išnjernichnek valo megdeličt-šejst tjazob bejerneta szonezat reve és címe: GP 17 Nizzva a lates-s-benoski novíklivovanej, ktorá vyda go pozyvana opine dokrzata spenna kymogov byrektyvy dot. Urządzeń Cśrienlowych: GP perumies sį adresa organismului nofilikat care a apreciat pozitiv conformarea cu Dizetiva privind echipamenties sub presume: GD | | CE - ERKLÆRING OM-SAMSVAR<br>CE - ILMOITUS-YHDENMUKAISUUDESTA<br>CE - PROHLÁSENI-O-SHODË | orrige side:<br>ā sivulta:<br>redchozí strany: | £ 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | th the state of th | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 12 (N) fortsettelse fra forrige side: 13 (m) jatkoa edelliseltä sivulta: 14 (CZ) pokračování z předchozí strany: | οχετίζεται η δήλωση:<br>ica esta declaração:<br>πносится<br>ring vedrører:<br>laration gáller:<br>is av denne deklarasjonen: | Mass, ill act tryk (PS): 4-K, (Pag) Mark ill act tryk (PS): 4-K, (Pag) (Abricas, liddle temperatur (TS): 4-K) (Abricas, liddle temperatur (TS): 4-K) (Abricas, liddle temperatur (TS): 4-K-K) (Abricas, liddle temperatur (TS): 4-K-K-K) Produktorsummen og temstill rigdle; se modellens latrik sskilt Marinat illdlen temperatur (TS): 4-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K | Newn og adresse på bemyndget organ, der har foetlagde en positiv bedynmelse at , at udskytet lever og til kravene i PED (Direktiv for Tykkærende Ustsyrf; «Ab-Mann och address för det armälda organ som godkänt uppfyllandet av tryockoutuslimpsgleiderkeit «Ab-Mann och address för det armälda organ som godkänt uppfyllandet av tryockoutuslimpsgleiderkeit «Ab-Mann och addresse til det autörsert organet som positiv tedemte sammer and offerkveit or trykkulasyr (Pressure Equipment Direktiv); «Ab-Mann innig sosdie, pkøt hak myörleisen päätikisen paindairedirektiivin noudattamisessä: «Ab- | | CE - DECLARAÇÃO-DE-CONFORMIDADE<br>CE - 3AABJIEHNÉ-O-COOTBETCTBUN<br>CE - OPFYLLDELSESERKLÆRING<br>CE - FÖRSÄKRAN-OM-ÖVERENSTÄMMELSE | <ol> <li>Ов (Р) continueção da página anterior.</li> <li>Ов (чоз продолжение предъдущей страницы:<br/>10 (ж) fortsat fra fortige side:</li> <li>(1 (S) fortsat fra fortige side:</li> </ol> | oπ Προδιαγραφές Σχεδιασμού των μοντέλων με τα οποία σχετίζεται η δήλωση: 08 Εspecificações de projecto dos modelos a que se aplica esta declaração: 19 Προεκτικιε καρακτερικτικτικ μορειεώ, κ κοτορείм στιοсится 19 Προεκτικιε αзавление 10 Τροερες είπαι μο το το από με το το ποσεί πει το Τροερες είπαι το το από με το το από με το το από με το το μοσεί πει το Ενεισκε το το από με το | 10 • Maks. Iliant Ink. (FS); 4K> (Par) • Min. wask. Iliant the (FS); 4K> (Par) • TSm. where I temperatur pa torty science 4C • (°C) • Kolemidder, 4M • Rodicing and tryskingsuskin, 4K> (Par) • Rodicing and tryskingsuskin, 4K> (Par) • Productionsummen of temstillingsis se modellers fabriksskill 11 • Marinest fillate tryof, FS; 4K (Ear) • Minmax ilialen trepartur (TS): • TSm. Minmarpeatur (TS): • Kolemeder, 4K • Installing for tryskenergestus on mobis-graar maximalt tillates tryof, PS; 4M> (°C) • TSm. Minmarpeatur (TS): Min | 10 Newn og adresse på bemyndiget organ, der har bretaget en posit bedrimmelse af å utskrive lever og til kravene i PED (Direktiv bri Prikazerene Uskstyri. «De. 11 Nemn och adress för det armäkla organ som godhänt uppfyllande av tyckutustningstellerler. «De. 12 Nem på og adresse i för ett autöreste bogganel som positiv bedam sammar med fridt kivet för tyrkkutstyr (Prissare Epupmert. 12 Direktivet) «De. 13 Som inhorlann einem mit ja sossite, jöka tek mytnesen påätivist panedaltedrektivin noudattamisesta: «Q. | | | | Προδιαγραφές Σχεδιασι<br>Especificações de proje<br>Προεκτικώς χαρακτερικ<br>Hacronque заявление:<br>Typespecifikationer for v<br>Designspecifikationer f<br>Konstruksjonsspesifikasi | KA (bar). Inta (175): Old bassa pressione. Ale ("Old pressione and pressione and pressione and pressione." Ale ("Old pression." pression." Ale pression. Ale ("Old pression." Ale pression. A | othe ha riscontrato la latinua a pressione: <a href="mailto:color: risk;">de pressione: <a href="mailto:color: risk;">de pressione: <a href="mailto:color: risk;">de pressione: risk;</a> que availiou o, que availiou de presenta a secriaçarias. I privintamentos la secriaçarias. I privintamento la secriaçarias. I privintamento la secriaçarias. I privintamento la secriaçaria de la secriaçaria de la secriaçaria de la secriaçaria de la secriaça de la secriaça de la secriação l</a></a> | | CE - DECLARACION-DE-CONFORMIDAD<br>CE - DICHIARAZIONE-DI-CONFORMITA<br>CE - AHARZH ZYMMOPØRZHZ | 66 (E) continuación de la página anterior: 66 (1) continua dalla pagina precedente: 67 (GR) ouvézera anó tryv nponyvolusvn ozklód: | | 06 • Pressione massima consentia PS; - 4K- (Bar) • Temperatura minimateria acconsentia (TS); • Temperatura minimateria acconsentia (TS); • TSmir: temperatura minimateria acconsentia (TS); • Refrigeratis - 4C+ (C) Refrigeration 4C | 06 Nome e indirazo dell'Erte riconosciulo che ha risconitato la contratta di al Dietria ha la papaecolatata a pressione: «Фр. 70 Origu ката бъй-бичл тои Комопотры от органдато тои втеромера бългону ката то одди-органдато порта в темпота би от организато, что Толгону по пота се от организато пота се от отбетна съве есщениятеля в потомитела се от отбетна съве есщениятеля съве есщениятеля съве есщениятеля от объедия в такине от от отбетна съве есщениятеля от отбетна съветна съве | | CE - DECLARATION-OF-CONFORMITY CE -<br>CE - KONFORMITÄTSERKLÄRUNG CE -<br>CE - DECLARATION-DE-CONFORMITE CE -<br>CE - CONFORMITEITS VERKLARING | 05 (E oz ontinuation of previous page: 05 (E oz Oz Fortsetzung der vorherigen Seite: 06 (1 oz Oz ez suite de la page précédente: 07 (Gi oz ottobro vortige pagina: | Design Specifications of the models to which this declaration relates: Konstruktionsdaten der Modelle auf die sich diese Erklärung bezieht: Specifications de conception des modeles auxquels se rapporte cette declaration: Ontwerpspecificaties van de modellen waarop deze verklaring betrekting heeft. Especificaciones de diseño de los modelos a los cuales hace referencia esta declaración: Specifiche di progetto dei modelli cui fa riferimento la presente dichiarazione: | 11 • Maximum allowable pressure IPS): ⟨K⟩ (bar) • Minimumakonum allowable pressure IPS): ⟨K⟩ (bar) • Minimumakonum allowable pressure IPS): ⟨K⟩ (bar) • Refrigerant: ⟨K⟩ • Salting of pressure state vertex (bar) • Manufacturing number and manufacturing year: refer to model amangable • Minimalm stassing brouck (PS): ⟨K⟩ (Bar) Saffiguritie; ⟨M⟩ (PS): ⟨K⟩ (Bar) • Finstellung der Druck · Schutzvorrichtung; ⟨P⟩ dartication er menne de Behrication: se reporter à la popuquete signafetique du modèle experient der geseinn maximat animalmen er la land de baja pression • Finstellung van dudeverleiging; ⟨P⟩ (Bar) dudeverl | of Name and address of the Notified body that judged positively on complanew thir Persexue Equipment Directive: «Co-Dame und Adresse der benannten Stelle, die positiv unter Enrisatung der Druckanfagen-Richtifie unfalle: «Co-Barnatung der Druckanfagen-Richtifie unfalle: «Co-Conformité à la directive sur l'équipement de pression: «Co-Manna en adress van de aangemeble rissantie de positivité geoordeeld heet de conformité un de Berhüft Druckapanatuur: «Co-Brownter y directivité de Organismon Maricando use juzgió positivamente el cumplimiento con la Directiva en materia de Equipos de Presión: «Co- | | 5555 | 25 22 24<br>28 25 25<br>29 36 76 78 | 2 | 2 8 8 4 8<br>2 10 10 10 10 10 10 10 10 10 10 10 10 10 | 01 Na<br>00 Na<br>01 Na<br>03 No<br>04 Na<br>05 No<br>05 No<br>05 No<br>06 No<br>07 No | Vyrobré díslo a rok výroby: nájdele na výrobnam štílku modelu Liz n veriden maksimum basin (PS); «PP (bar) Liz nevelnem minimum kasinum se sakli k (bar) TSmnz. TSmnz. TSmnz. TSmnz. Tsmnz. (zi neselna dosmna) TSmnz. Tsmnz. Tsmnz reskimum basinum basinum basinum basinum basinum kasinum postania k (bs) kasiy gelen dosmna. Nastavenie tlakového poistného zariadenia: <P> (bar) Chladivo: <N> Basınç emniyet düzeninin ayarı: <P> (bar) İmalat numarası ve imalat yılı: modelin ünite plakasına bakın sıcaklığı (PS): <M> (°C) Soğutucu: Mnimalina/imaximaina povoleria teplota (TS\*): \*TSmm: Mnimalia teplota na nickotakovej strane: <L> (\*C) \*TSmax: Nax/lena i elaplota koreš pondujuca s maximalnym povolenym takom (PS): <III» (\*C)</li> 24 • Maximálny povolený tlak (PS): <K> (bar) 20 Deklaratsiooni alla kuuluvate mudelite disainispetsifikatsioonid: 21 Проектни спецификации на моделите, за които се отнася декларацията: 22 Konstrukcinės specifikacijos modelių, kurie susiję su šia deklaracija: 24 Konštrukčné špecifikácie modelu, ktorého sa týka toto vyhlásenie: 23 To modeļu dizaina specifikācijas, uz kurām attiecas šī deklarācija: 25 Bu bildirinin ilgili olduğu modellerin Tasarım Özellikleri: 24 (SK) pokračovanie z predchádzajúcej strany: 25 (TR) önceki sayfadan devam 23 (LV) iepriekšējās lappuses turpinājums: 22 (LT) ankstesnio puslapio tęsinys: CE - ATTIKTIES-DEKLARACIJA CE - ATBIL STIBAS-DEKLARĀCIJA CE - VYHLÁSENIE-ZHODY CE - UYUMLULUK-BILDIRISI CE - IZJAVA O SKLADNOSTI CE - VASTAVUSDEKLARATSIOON CE - ДЕКЛАРАЦИЯ-3A-CЪOTBETCTBИE | | 40 b | -30 | 63 | R410A | 40 b | |----------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------| | | PS | <l> TSmin</l> | <m> TSmax</m> | | | | | < <b>K</b> > PS | Ş | <m>&gt;</m> | Ş | <b>♣</b> | | no oxygens. At | gilio steglo pitetarso russayiritas. 377 (var.)<br>ilo numeris ir pagaminimo metai: žiūrėkite modelio<br>irimo plokštele | nālais piejaujamais spiediens (PS): | in: Minimālā temperatūra zemā spiediena pusē: <a> (°C)</a> ax: Piesātinātā temperatūra saskaņā ar maksimālo sidenimas cendinas (°C). | prejaujanio spreuenio (PS). אאיל (C)<br>nātājs: <n><br/>ena drošības ierīces iestarīšana: <p> (bar)</p></n> | vošanas numurs un izgatavošanas gads: skat. modeļa<br>votājuzņēmuma plāksnītie | ပွ bar ပွ bar 24 Názov a adresa certifikačného úradu, ktorý kladne posúdil zhodu so slov organa za ugotavljanje skladnosti, ki je pozitivno ocenil d organi, mis hindas Surveseadmete Direktiiviga ühilduvust smernicou pre tlakové zariadenia: <a>A></a> 25 Basınçıl Teçhizat Direktifine uygunluk hususunda dumlu olarak değerlendirilen Onaylanmış kuruluşun adı ve adresi: <a>A></a> DAIKIN Jean-Pierre Beuselinck Ostend, 1st of June 2010 General Manager AIB VINÇOTTE INTERNATIONAL Avenue du Roi 157 B-1190 Brussels, Belgium ô Zandvoordestraat 300, B-8400 Oostende, Belgium DAIKIN EUROPE N.V. | Co | NTE | NTS | Page | |-----|--------------|------------------------------------------------------------------------------------------------------------------------------|------| | 1. | Defin | nitions | 2 | | 2. | Gene | eral Safety precautions | 2 | | 3. | | duction | | | ٠. | 3.1. | General information | | | | 3.2. | Combination and options | | | | 3.3. | Scope of the manual | | | 4. | 3.4. | Model identification | | | 4. | 4.1. | Accessories supplied with this unit | | | 5. | | view of unit | | | | 5.1. | Opening the unit | | | | 5.2. | Main components in the unit | | | | 5.3. | Main components in the switch box | | | | | Electrical component box (right switch box) | | | 6. | Sele | cting an installation location | | | | | General precautions on installation location | 7 | | | | Weather dependent precautions | | | 7 | Dime | Selecting a location in cold climates | | | 7. | 7.1. | ensions and service space | | | | 7.1.<br>7.2. | Service space | | | 8. | Inspe | ecting, handling and unpacking the unit | | | | 8.1. | Inspection | | | | 8.2. | Handling | | | | 8.3.<br>8.4. | Unpacking Installing the unit | | | 9. | | gerant pipe size and allowable pipe length | | | ٥. | 9.1. | Selection of piping material | | | | 9.2. | Selection of piping size | 11 | | | 9.3. | Selection of refrigerant branch kits | | | | 9.4. | Refrigerant refnets | | | | 0.1. | Piping length restrictions | | | | | Maximum allowable lengths | | | | _ | Maximum allowable height difference | | | 10. | | autions on refrigerant piping | | | | | Caution for brazing Connecting the refrigerant piping | | | | | Guidelines for handling stop valve | | | | | Cautions on handling the stop valve | | | | | How to use the stop valve Cautions on handling the stop valve cover | | | | | Cautions on handling the service port | | | | | Tightening torques | 16 | | | 10.4. | Leak test and vacuum drying | | | | | General guidelines Installation of refrigerant piping, leak test, vacuuming before | 16 | | | | electrical installation is done (regular installation method) | 16 | | | | Installation of refrigerant piping, leak test, vacuuming after electrical installation is done on any indoor or outdoor unit | 10 | | | | General guidelines | | | | | Set-up | 17 | | | | Leak test | | | 44 | Dina | Vacuum drying | | | | | insulation | | | 12. | | rical wiring work Precautions on electrical wiring work | | | | | Internal wiring – Parts table | | | | | System overview of field wiring | | | | | Requirements | | | | 12.5. | Routing Transmission wiring routing | | | | | Power supply routing | | | | | Precautions when knocking out knockout holes | 20 | | | 126 | Connection | 21 | | 13. | Char | ging refrigerant | .22 | |-----|-------|------------------------------------------------------|------| | | 13.1. | Precautions | . 22 | | | 13.2. | Important information regarding the refrigerant used | . 22 | | | 13.3. | Calculating the additional refrigerant charge | . 23 | | | | System with the same indoor unit types | . 2 | | | | System with different indoor unit types | | | | | Example | | | | 13.4. | Method for adding refrigerant | | | | | Precautions when adding refrigerant | | | | | Charging method | | | | | Checks after adding refrigerant | | | 14. | Start | -up and configuration | .25 | | | 14.1. | Checks before initial start up | . 25 | | | 14.2. | Field settings | . 20 | | | | How to operate the push buttons | | | | | Field settings by push buttons | | | | 14.3. | Test operation | | | | | Precautions before starting test operation | | | | | Test operation | | | 15. | Oper | ation of the unit | .28 | | 16. | Main | tenance and service | .29 | | | 16.1. | Maintenance introduction | . 29 | | | 16.2. | Service precautions | . 29 | | | 16.3. | Service mode operation | . 29 | | | | Vacuum method | | | | | Refrigerant recovery operation method | . 29 | | 17. | Caut | ion for refrigerant leaks | .30 | | | 17.1. | Introduction | 30 | | | 17.2. | Maximum concentration level | . 30 | | | 17.3. | Procedure for checking maximum concentration | . 30 | | 18. | Disp | osal requirements | .30 | | 19. | Unit | specifications | .30 | | | | Technical specifications | | | | | Electrical specifications | | Thank you for purchasing this product. The original instructions are written in English. All other languages are translations of the original instructions. CAREFULLY READ THESE INSTRUCTIONS BEFORE INSTALLATION. THEY WILL TELL YOU HOW TO INSTALL AND HOW TO CONFIGURE THE UNIT PROPERLY. KEEP THIS MANUAL IN A HANDY PLACE FOR FUTURE REFERENCE. ### 1. Definitions ### Installation manual: Instruction manual specified for a certain product or application, explaining how to install, configure and maintain it. ### Danger: Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. ### Warning: Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury. ### Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices. ### Note: Indicates situations that may result in equipment or property-damage accidents only. ### Dealer: Sales distributor for products as per the subject of this manual. ### Installer: Technical skilled person who is qualified to install products as per the subject of this manual. ### Service agent: Qualified person who can perform or coordinate the required service to the unit. ### Legislation: All international, European, national and local directives, laws, regulations and/or codes which are relevant and applicable for a certain product or domain. ### Accessories: Equipment which is delivered with the unit and which needs to be installed according to instructions in the documentation. ### **Optional equipment:** Equipment which can optionally be combined to the products as per the subject of this manual. ### Field supply: Equipment which needs to be installed according to instructions in this manual, but which are not supplied by Daikin. ### 2. GENERAL SAFETY PRECAUTIONS All activities described in this manual shall be carried out by an installer Be sure to wear adequate personal protection equipment (protection gloves, safety glasses, ...) when performing installation, maintenance or service to the unit. If not sure of installation procedures or operation of the unit, always contact your local dealer for advice and information. Improper installation or attachment of equipment or accessories could result in electric shock, short-circuit, leaks, fire or other damage to the equipment. Be sure only to use accessories and optional equipment made by Daikin which are specially designed for use with the products as of subject in this manual and have them installed by an installer. ### DANGER: ELECTRICAL SHOCK Switch off all power supply before removing the switchbox service panel or before making any connections or touching electrical parts. To avoid electric shock, be sure to disconnect the power supply 1 minute or more before servicing the electrical parts. Even after 1 minute, always measure the voltage at the terminals of main circuit capacitors or electrical parts and, before touching, be sure that those voltages are 50 V DC or less. When service panels are removed, live parts can easily be touched by accident. Never leave the unit unattended during installation or servicing when the service panel is removed. ### DANGER: DO NOT TOUCH PIPING AND INTERNAL PARTS Do not touch the refrigerant piping, water piping or internal parts during and immediately after operation. The piping and internal parts may be hot or cold depending on the working condition of the unit. Your hand may suffer burns or frostbite if you touch the piping or internal parts. To avoid injury, give the piping and internal parts time to return to normal temperature or, if you must touch them, be sure to wear protective gloves. ### 3. Introduction ### 3.1. General information This installation manual concerns Daikin Altherma air to water inverter heat pump units of the Daikin EMRQ series. These units are intended for outdoor installation and aimed for apartment or other multi user buildings. The unit is mainly designed for heating operation. If heat pump type indoor units are connected, cooling and heat recovery operation is also possible. These units have heating capacities ranging from 22.4 to 45 kW and cooling capacities rating from 20 to 40 kW. The outdoor unit is designed to work in heating mode at ambient temperatures from -20°C to 20°C and in cooling mode at ambient temperatures from 10°C to 43°C. Design of the system must not be done at temperatures below $-15^{\circ}$ C. ### 3.2. Combination and options The EMRQ outdoor units can only be combined with EKHVMRD or EKHVMYD indoor units. To install the outdoor unit, the following optional parts are also required. The refrigerant branching kit: | Description | Model name | |---------------|------------| | | KHRQ23M29H | | refnet header | KHRQ23M64H | | remet neader | KHRQ22M29H | | | KHRQ22M64H | | | KHRQ23M20T | | | KHRQ23M29T | | refnet joint | KHRQ23M64T | | remet joint | KHRQ22M20T | | | KHRQ22M29T | | | KHRQ22M64T | For the selection of the optimal branching kit, please refer to "9.3. Selection of refrigerant branch kits" on page 11. To collect centrally the drain water from the bottom plate, following option can be connected: | Description | Model name | | |-----------------------|------------|--| | Central drain pan kit | KWC25C450 | | When there is a risk for freeze-up of this drain pan, the installer should take enough measures to avoid ice accumulation. ### 3.3. Scope of the manual This manual describes the procedures for handling, installing and connecting EMRQ units. This manual has been prepared to ensure adequate maintenance of the unit, and it will provide help if problems occur. The installation of the EKHVMRD or EKHVMYD indoor unit(s) is described in the indoor unit installation manual. ### 3.4. Model identification ### 4. Accessories ### 4.1. Accessories supplied with this unit See location 1 in the figure below for reference to where following accessories are supplied with the unit. | Installation manual | 1x | |-------------------------------------------------|----| | Additional refrigerant charge label | 1x | | Installation information sticker | 1x | | Fluorinated greenhouse gases label | 1x | | Multilingual fluorinated greenhouse gases label | 1x | See location 2 in the figure above for reference to where following accessories are supplied with the unit. | following accessories are supplied with the unit. | | | | | | | |---------------------------------------------------|-------|------|----|----|----|----| | | | EMRQ | | | | | | | | 8 | 10 | 12 | 14 | 16 | | Liquid accessory pipe (1) | | 1x | 1x | 1x | 1x | 1x | | Liquid accessory pipe (2) | | 1x | 1x | 1x | 1x | 1x | | | Ø22.2 | 1x | _ | _ | _ | _ | | Suction gas accessory pipe (1) | Ø22.2 | _ | 1x | 1 | _ | _ | | | Ø28.6 | _ | _ | 1x | 1x | 1x | | | Ø19.1 | 1x | | | _ | _ | | Suction gas accessory pipe (2) | Ø22.2 | _ | 1x | _ | _ | _ | | | Ø28.6 | _ | _ | 1x | 1x | 1x | | | Ø15.9 | 1x | _ | _ | _ | _ | | Discharge accessory pipe (1) | Ø19.1 | _ | 1x | 1x | _ | _ | | | Ø19.1 | _ | - | _ | 1x | 1x | | | Ø15.9 | 1x | 1 | 1 | _ | _ | | Discharge accessory pipe (2) | Ø19.1 | | 1x | 1x | _ | | | | Ø22.2 | _ | _ | _ | 1x | 1x | | Accessory joint (angle of 90°) (1) | Ø25.4 | 1x | 1x | 1x | 1x | 1x | | Accessory joint (angle of 90°) (2) | Ø19.1 | 1x | 1x | 1x | 1x | 1x | | Accessory joint | | 1x | _ | _ | _ | | ### 5. OVERVIEW OF UNIT ### 5.1. Opening the unit To gain access to the unit, front plates need to be opened as follows: Once the front plates open, the electrical component box can be accessed by removing the electrical component box cover as follows: For service purposes, the push buttons on the switch box PCB need to be accessed. To access these push buttons, the electrical component box cover does not need to be opened. See "Field settings by push buttons" on page 27. ### DANGER: ELECTRICAL SHOCK See "2. General Safety precautions" on page 2. DANGER: DO NOT TOUCH PIPING AND INTERNAL PARTS See "2. General Safety precautions" on page 2. ### 5.2. Main components in the unit Electrical component box (left switch box) ### For EMRQ8~12 only ### For EMRQ14+16 only - 1 Sub 2 PCB - 2 Terminal block X2M - Cable tie mountings. The cable tie mountings allow to fix the field wiring with cable ties to the switch box to ensure strain relief. - 4 Magnetic contactor K2M - 5 Current sensor PCB Electrical component box (right switch box) ### For all models - 1 Main PCB - 2 Sub 1 PCB - 3 Terminal block X1M Main terminal block which allows easy connection of field wiring for power supply. - 4 X1M on main PCB. Terminal block for transmission wiring. - Cable tie mountings. The cable tie mountings allow to fix the field wiring with cable ties to the switch box to ensure strain relief. ### 6. SELECTING AN INSTALLATION LOCATION ### WARNING Be sure to provide for adequate measures in order to prevent that the unit be used as a shelter by small animals. Small animals making contact with electrical parts can cause malfunctions, smoke or fire. Please instruct the customer to keep the area around the unit clean and clear. This is a class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures. ### **CAUTION** Appliance not accessible to the general public, install it in a secured area, protected from easy access. This unit, both indoor and outdoor, is suitable for installation in a commercial and light industrial environment. ### General precautions on installation location Select an installation site that meets the following requirements: - The foundation must be strong enough to support the weight of the unit. The floor is flat to prevent vibrations and noise generation and to have sufficient stability. - The space around the unit is adequate for maintenance and servicing (refer to "7.2. Service space" on page 9). - The space around the unit allows for sufficient air circulation. - There is no danger of fire due to leakage of inflammable gas. - The equipment is not intended for use in a potentially explosive atmosphere. - Select the location of the unit in such a way that the sound generated by the unit does not disturb anyone, and the location is selected according the applicable legislation. - All piping lengths and distances have been taken into consideration (refer to "9.4. System piping limitations" on page 12). - Take care that in the event of a water leak, water cannot cause any damage to the installation space and surroundings. - When installing the unit in a small room, take measures in order to keep the refrigerant concentration from exceeding allowable safety limits in the event of a refrigerant leak. Excessive refrigerant concentrations in a closed room can lead to oxygen deficiency. The equipment described in this manual may cause electronic noise generated from radio-frequency energy. The equipment complies to specifications that are designed to provide reasonable protection against such interference. However, there is no guarantee that interference will not occur in a particular installation. It is therefore recommended to install the equipment and electric wires keeping proper distances away from stereo equipment, personal computers, etc.... - Personal computer or radio - 2 Fuse - 3 Earth leakage protector - 4 Remote controller - 5 Indoor unit In places with weak reception, keep distances of 3 m or more to avoid electromagnetic disturbance of other equipment and use conduit tubes for power and transmission lines. - The refrigerant R410A itself is nontoxic, nonflammable and is safe. If the refrigerant should leak however, its concentration may exceed the allowable limit depending on room size. Due to this, it could be necessary to take measures against leakage. Refer to "17. Caution for refrigerant leaks" on page 30. - Do not install in the following locations. - Locations where sulphurous acids and other corrosive gases may be present in the atmosphere. - Copper piping and soldered joints may corrode, causing refrigerant to leak. - Locations where a mineral oil mist, spray or vapour may be present in the atmosphere. Plastic parts may deteriorate and fall off or cause water leakage. - Locations where equipment that produces electromagnetic waves is found. The electromagnetic waves may cause the control system to malfunction, preventing normal operation. - Locations where flammable gases may leak, where thinner, gasoline and other volatile substances are handled, or where carbon dust and other incendiary substances are found in the atmosphere. Leaked gas may accumulate around the unit, - Leaked gas may accumulate around the unit causing an explosion. - earthquakes into account. Improper installation may result in the unit turning over. When installing, take strong winds, typhoons or ### Weather dependent precautions - Select a place where the rain can be avoided as much as possible. - Be sure that the air inlet of the unit is not positioned towards the main wind direction. Frontal wind will disturb the operation of the unit. If necessary, use a screen to block the wind. - Ensure that water cannot cause any damage to the location by adding water drains to the foundation and prevent water traps in the construction. - Do not install the unit in areas where the air contains high levels of salt such as that near the ocean. ### Selecting a location in cold climates NOTE When operating the unit in a low outdoor ambient temperature, be sure to follow the instructions described below. To prevent exposure to wind and snow, install a baffle plate on the air side of the outdoor unit: Baffle plate In heavy snowfall areas it is very important to select an installation site where the snow will not affect the unit. If lateral snowfall is possible, make sure that the heat exchanger coil is not affected by the snow (if necessary construct a lateral canopy). - Construct a large canopy. - 2 Construct a pedestal. Install the unit high enough off the ground to prevent burying in snow ### 7. DIMENSIONS AND SERVICE SPACE ### 7.1. Dimensions of outdoor unit ### 7.2. Service space The space around the unit is adequate for servicing and the minimum space for air inlet and air outlet is available. (Refer to the figure below and choose one of the possibilities). | | A+B- | A+B | | |---|-------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------| | 1 | a ≥10 mm<br>b ≥300 mm<br>c ≥10 mm<br>d ≥500 mm | a ≥50 mm<br>b ≥100 mm<br>c ≥50 mm<br>d ≥500 mm | a ≥200 mm<br>b ≥300 mm | | 2 | a ≥10 mm<br>b ≥300 mm<br>c ≥10 mm<br>d ≥500 mm<br>e ≥20 mm | a ≥50 mm<br>b ≥100 mm<br>c ≥50 mm<br>d ≥500 mm<br>e ≥100 mm | a ≥200 mm<br>b ≥300 mm<br>e ≥400 mm | | 3 | a ≥10 mm<br>b ≥300 mm<br>c ≥10 mm<br>d ≥500 mm<br>e ≥20 mm<br>f ≥600 mm | a ≥50 mm<br>b ≥100 mm<br>c ≥50 mm<br>d ≥500 mm<br>e ≥100 mm<br>f ≥500 mm | | | 4 | a ≥10 mm<br>b ≥300 mm<br>c ≥10 mm<br>d ≥500 mm<br>e ≥20 mm | a ≥50 mm<br>b ≥100 mm<br>c ≥50 mm<br>d ≥500 mm<br>e ≥100 mm | | A B C D Sides along the installation site with obstacles Suction side - In case of an installation site where sides A+B+C+D have obstacles, the wall heights of sides A+C have no impact on service space dimensions. Refer to the figure above for impact of wall heights of sides B+D on service space dimensions. - In case of an installation site where only the sides A+B have obstacles, the wall heights have no influence on any indicated service space dimensions. - The installation space required on these drawings are for full load heating operation without considering possible ice accumulation. If the location of the installation is in a cold climate, then all dimensions above should be >500 mm to avoid accumulation of ice in between the outdoor units. ### 8. Inspecting, handling and unpacking the unit ### 8.1. Inspection At delivery, the unit must be checked and any damage must be reported immediately to the carrier's claims agent. ### 8.2. Handling When handling the unit, take into account the following: - 1 Fragile, handle the unit with care. - (the latest term of the latest term) Keep the unit upright in order to avoid compressor damage. - 2 Choose on beforehand the path along which the unit is to be brought in. - 3 Bring the unit as close as possible to its final installation position in its original package to prevent damage during transport. 4 - Packaging material - 2 Belt sling - 3 Opening - 4 Protector - 4 Lift the unit preferably with a crane and 2 belts of at least 8 m long as shown in the figure above. Always use protectors to prevent belt damage and pay attention to the position of the unit's centre of gravity. Use a belt sling of ≤20 mm wide that adequately bears the weight of the unit. A forklift can only be used for transport as long as the unit remains on its pallet as shown above. ### **CAUTION** To avoid injury, do not touch the air inlet or aluminium fins of the unit. Relief the unit from its packing material: Take care not to damage the unit when removing the shrink foil with a cutter. ### **WARNING** Tear apart and throw away plastic packaging bags so that children will not play with them. Children playing with plastic bags face danger of death by suffocation. - Remove the 4 screws fixing the unit to its pallet. - Make sure that all accessories as mentioned in "4.1. Accessories supplied with this unit" on page 3 are available in the unit. ### 8.4. Installing the unit Make sure the unit is installed level on a sufficiently strong base to prevent vibration and noise. When the installation height of the unit needs to be increased, do not use stands to only support the corners: - X Not allowed - O Allowed (units: mm) - The height of the foundation must at least be 150 mm from the floor. - In heavy snowfall areas, this height should be increased dependant on the installation place and condition. - The unit must be installed on a solid longitudinal foundation (steelbeam frame or concrete) and make sure the base under the unit is larger than the grey marked area: - Hole for foundation bolt - 2 Inner dimension of the base - 3 Distance between foundation bolt holes - 4 Depth of unit - 5 Outher dimension of the base - 6 Longitudinal foundation dimension - 7 Distance between foundation bolt holes - Fasten the unit in place using four foundation bolts M12. It is best to screw in the foundation bolts until their length remains 20 mm above the foundation surface. - Prepare a water drainage channel around the foundation to drain waste water from around the - During heating operation and when the outdoor temperatures are negative, the drained water from the outdoor unit will freeze up. If the water drainage is not taken care of, the area around the unit might be very slippery. - When installed in a corrosive environment, use a nut with plastic washer (1) to protect the nut tightening part from rust. ### REFRIGERANT PIPE SIZE AND ALLOWABLE PIPE LENGTH ### 9.1. Selection of piping material NOTE Piping and other pressure containing parts shall comply with the applicable legislation and shall be suitable for refrigerant. Use phosphoric acid deoxidised seamless copper for refrigerant. - Foreign materials inside pipes (including oils for fabrication) must be ≤30 mg/10 m. - Temper grade: use piping with temper grade in function of the pipe diameter as listed in table below. | Pipe Ø | Temper grade of piping material | |--------|---------------------------------| | ≤15.9 | 0 | | ≥19.1 | 1/2H | O = Annealed 1/2H = Half hard ### 9.2. Selection of piping size - Reversible indoor units (EKHVMYD) need 3 pipes. - Heating only indoor units (EKHVMRD) need 2 pipes (liquid and discharge only). - Size: determine the proper size referring to following table: ### A. Piping between outdoor unit and first branch pipe | | Piping outer diameter size (mm) | | | | | |---------------------------------|---------------------------------|--------------------|-------------|--|--| | Outdoor unit capacity type (Hp) | Suction gas pipe | Discharge gas pipe | Liquid pipe | | | | 8 | 19.1 | 15.9 | 9.5 | | | | 10 | 22.2 | 19.1 | 9.5 | | | | 12 | 28.6 | 19.1 | 12.7 | | | | 14+16 | 28.6 | 22.2 | 12.7 | | | ### B. Piping between refrigerant branch kits Choose from the following table in accordance with the indoor unit total capacity type, connected downstream: | | Piping outer diameter size (mm) | | | | | |-------------------------------|---------------------------------|--------------------|-------------|--|--| | Indoor unit<br>capacity index | Suction gas pipe | Discharge gas pipe | Liquid pipe | | | | <150 | 15.9 | 12.7 | 9.5 | | | | 150≤x<200 | 19.1 | 15.9 | 9.5 | | | | 200≤x<290 | 22.2 | 19.1 | 9.5 | | | | 290≤x<420 | 28.6 | 19.1 | 12.7 | | | | 420≤x<520 | 28.6 | 28.6 | 15.9 | | | ### Example: Total capacity connected downstream for B1 = capacity index indoor 2 + capacity index indoor 3 + capacity index indoor 4 = 210 Total capacity connected downstream for B2 = capacity index indoor 3 + capacity index indoor 4 = 130 ### C. Piping between refrigerant branch kit and indoor unit Pipe size for direct connection to indoor unit must be the same as the connection size of the indoor unit: | Piping outer diameter size (mm) | | | |---------------------------------|--------------------|-------------| | Suction gas pipe | Discharge gas pipe | Liquid pipe | | 15.9 | 12.7 | 9.5 | The pipe thickness of the refrigerant piping shall comply with the applicable legislation. The minimal pipe thickness for R410A piping must be in accordance with the table below. | Pipe Ø | Minimal thickness t (mm) | |--------|--------------------------| | 6.4 | 0.80 | | 9.5 | 0.80 | | 12.7 | 0.80 | | 15.9 | 0.99 | | 19.1 | 0.80 | | 22.2 | 0.80 | | 28.6 | 0.99 | - In case the required pipe sizes (inch sizes) are not available, it is also allowed to use other diameters (mm sizes), taken the following into account: - select the pipe size nearest to the required size. - use the suitable adapters for the change-over from inch to mm pipes (field supply). ### 9.3. Selection of refrigerant branch kits ### Refrigerant refnets When using refnet joints at the first branch counted from the outdoor unit side, choose from the following table in accordance with the capacity of the outdoor unit (example: refnet joint a) | | Refrigerant branch kit name | | |---------------------------------|-----------------------------|-------------| | Outdoor unit capacity type (Hp) | 3 pipes | 2 pipes | | 8+10 | KHRQ23M29T9 | KHRQ22M29T9 | | 12~16 | KHRQ23M64T | KHRQ22M64T | When all connected indoor units are heating only (EKHVMRD, only 2 pipes), at that moment the first refrigerant branch kit is for a 2 pipe system. If 1 indoor unit is reversible, then you must select a refrigerant branch kit for a 3 pipe system. ■ For refnets joints other than the first branch (example refnet joint b and c), select the proper branch kit model based on the total capacity index of all indoor units connected after the refrigerant branch. | | Refrigerant branch kit name | | |----------------------------|-----------------------------|------------| | Indoor unit capacity index | 3 pipes | 2 pipes | | <200 | KHRQ23M20T | KHRQ22M20T | | 200≤x<290 | KHRQ23M29T9 | KHRQ22M29T | | 290≤x<520 | KHRQ23M64T | KHRQ22M64T | Concerning refnet headers, choose from the following table in accordance with the total capacity of all the indoor units connected below the refnet header: | | Refrigerant branch kit name | | |-------------------------------|-----------------------------|------------| | Indoor unit<br>capacity index | 3 pipes | 2 pipes | | <200 | KHRQ23M29H | KHRQ22M29H | | 200≤x<290 | KHRQ23M29H | KHRQ22M29H | | 290≤x<520 | KHRQ23M64H | KHRQ22M64H | NOTE Refrigerant branch kits can only be used with R410A. ### 9.4. System piping limitations ### Piping length restrictions Make sure to perform the piping installation within the range of the maximum allowable pipe length, allowable level difference and allowable length after branching as indicated below: ### **Example 1: Branch with refnet joint** Example 2: Branch with refnet joint and refnet header **Example 3: Branch with refnet header** ### Maximum allowable lengths Actual pipe length between outdoor and indoor unit ≤100 m Example 1: a+b+c+d+e+f+g+p≤100 m Example 2: a+i+k≤100 m Example 3: a+i≤100 m Equivalent piping length between indoor and outdoor units ≤120 m (equivalent pipe length of refnet to be taken 0.5 m and for header 1.0 m) Total piping length from outdoor to all indoor units ≤300 m Pipe length from first branch kit (either refnet joint or refnet header) to indoor unit ≤40 m [Example 1]: unit 8: b+c+d+e+f+g+p≤40 m [Example 2]: unit 6: b+h≤40 m, unit 8: i+k≤40 m [Example 3]: unit 8: i≤40 m ### Maximum allowable height difference Difference in height between outdoor and indoor units H1≤40 m Difference in height between lowest and heighest indoor unit H2≤15 m If setting [A-01] (this is an indoor unit setting) is changed, maximum H2 difference can be increased to 25 m. Refer to field settings in the indoor unit installation manual for more information. When the equivalent pipe length between outdoor and indoor units is 90 m or more, the size of the main liquid pipe must be increased. Never increase suction gas pipe and discharge gas pipe sizes. Depending on the length of the piping, the capacity may drop, but even in such a case it is possible to increase the size of the main liquid pipe. | HP | Liquid Ø (mm) | |-------|---------------| | 8+10 | 9.5 → 12.7 | | 12~16 | 12.7 → 15.9 | Make sure to perform the piping installation within the range of the maximum allowable pipe length, allowable level difference and allowable length after branching as indicated above. ### 10. Precautions on refrigerant piping - Do not allow anything other than the designated refrigerant to get mixed into the freezing cycle, such as air, etc. If any refrigerant gas leaks while working on the unit, ventilate the room thoroughly right away. - Use R410A only when adding refrigerant - Installation tools: Make sure to use installation tools (gauge manifold charge hose, etc.) that are exclusively used for R410A installations to withstand the pressure and to prevent foreign materials (e.g. mineral oils and moisture) from mixing into the system. Vacuum pump: Use a 2-stage vacuum pump with a non-return valve. Make sure the pump oil does not flow oppositely into the system while the pump is not working. Use a vacuum pump which can evacuate to -100.7 kPa (5 Torr, - Protection against contamination when installing pipes - Take measures to prevent foreign materials like moisture and contamination from mixing into the system. | | Installation period | Protection method | |---|--------------------------|------------------------| | | More than a month | Pinch the pipe | | • | Less than a month | | | | Regardless of the period | Pinch or tape the pipe | - Great caution is needed when passing copper tubes through - Block all gaps in the holes for passing out piping and wiring using sealing material (field supply). (The capacity of the unit will drop and small animals may enter the machine.) Example: passing piping out through the front Plug the areas marked with (When the piping is routed from the front panel.) DAIKIN After all the piping has been connected, make sure there is ### 10.1. Caution for brazing - Make sure to blow through with nitrogen when brazing. Blowing through with nitrogen prevents the creation of large quantities of oxidized film on the inside of the piping. An oxidized film adversely affects valves and compressors in the refrigerating system and prevents proper operation. - The nitrogen pressure should be set to 0.02 MPa (i.e., just enough so it can be felt on the skin) with a pressure-reducing valve. - 1 Refrigerant piping - 2 Part to be brazed - 3 Taping - 4 Hands valve - 5 Pressure-reducing valve - 6 Nitrogen - Do not use anti-oxidants when brazing the pipe joints. Residue can clog pipes and break equipment. - Do not use flux when brazing copper-to-copper refrigerant piping. Use phosphor copper brazing filler alloy (BCuP) which does not require flux. - Flux has an extremely harmful influence on refrigerant piping systems. For instance, if chlorine based flux is used, it will cause pipe corrosion or, in particular, if the flux contains fluorine, it will deteriorate the refrigerant oil. ### 10.2. Connecting the refrigerant piping - Installation shall be done by an installer, the choice of materials and installation shall comply with the applicable legislation. In Europe the EN378 is the applicable standard that shall be used. - Ensure that the field piping and connections are not subjected to stress. - 1. Decide front or side connection. Installation of refrigerant piping is possible as front connection or side connection (when taken out from the bottom) as shown in the figure below: - 1 Left-side connection - 2 Front connection - 3 Right-side connection For front connection, please remove the front cover as follows: For side connections, the knockout hole on the bottom plate should be removed: - 1 Large knockout hole - 2 Drill - 3 Points for drilling NOTE ### Precautions when knocking out knockout holes - Be sure to avoid damaging the casing - After knocking out the knockout holes, we recommend you remove the burrs and paint the edges and areas around the edges using repair paint to prevent rusting. - When passing electrical wiring through the knockout holes, wrap the wiring with protective tape to prevent damage as shown above. Any gas or oil remaining inside the stop valve may blow off the pinched piping. Failure to observe the instructions in procedure below properly may result in property damage or personal injury, which may be serious depending on the circumstances. Use the following procedure to remove the pinched piping: Remove the valve cover and make sure that the stop valves are fully closed. - 1 Service port and service port cover - 2 Stop valve - 3 Field piping connection - 4 Stop valve cover 2 Connect the vacuuming/recovery unit to service ports of all stop valves. - 1 Gauge manifold - 2 Nitrogen - 3 Measuring instrument - 4 Refrigerant R410A tank (siphon system) - 5 Vacuum pump - 6 Charge hose - 7 Refrigerant charge port - 8 Discharge pipe stop valve - 9 Suction gas pipe stop valve - 10 Liquid pipe stop valve - 11 Valve A - 12 Valve B - 13 Valve C - 14 Outdoor unit - 15 To indoor unit - 16 Stop valve - 17 Service port - 18 Field piping - 19 Gas flow - 3 Recover gas and oil from the pinched piping by using a recovery unit. Do not vent gases into the atmosphere. 4 When all gas and oil is recovered from the pinched piping, disconnect the charge hose and close the service ports. In case the pinched piping lower part looks like detail A in the figure below, follow instructions as per procedure steps 7-8. In case the pinched piping lower part looks like detail B in the figure below, follow instructions as per procedure steps 6-7-8. - 1 Pinched piping - 2 Stop valve - 3 Service port - 4 Point of melting the brazing metal; cut pipe off just above this brazing or marking point - 6 For discharge and suction gas stop valves, cut off the lower part of the smaller pinched piping with an appropriate tool (e.g. pipe cutter, a pair of nippers, ...). Let the remaining oil drip out in case the recovery was not complete: Wait until all oil is dripped out. 7 Cut the pinched piping off with a pipe cutter just above the brazing point or marking if there is no brazing point. Never remove the pinched piping by brazing. - 8 Wait until all oil is dripped out before continuing with the connection of the field piping in case the recovery was not complete. - 3. Connecting refrigerant piping to the outdoor unit. All local interunit piping are field supplied except the accessory pipes. Precautions when connecting field piping. Add brazing material as shown in the figure. - Be sure to use the supplied accessory pipes when carrying out piping work in the field. - Be sure that the field installed piping does not touch other pipes, the bottom panel or side panel. Especially for the bottom and side connection, be sure to protect the piping with suitable insulation, to prevent it from coming into contact with the casing. Connection from the stop valves to the field piping using accessory pipes should be as below: - A Front connection - B Bottom connection - C EMRQ8 - Liquid pipe stop valve - 2 Suction gas pipe stop valve - 3 Discharge gas pipe stop valve - 4 Brazing - 5 Liquid accessory pipe (1) - 6 Suction gas accessory pipe (1) - 7 Discharge gas accessory pipe (1) - 8 Accessory joint (angle 90°) (1) - 9 Accessory joint (angle 90°) (2) - 10 Liquid accessory pipe (2) - 11 Suction gas accessory pipe (2) - 12 Discharge gas accessory pipe (2) - 13 Accessory joint Make sure that the onsite piping does not come in contact with other piping, the bottom frame or side panels of the unit. From the connections above to the branch kits, is the responsibility of the installer (field piping). 4. Branching the refrigerant piping For installation of the refrigerant branching kit, refer to the installation manual delivered with the kit. Horizontal surface Follow the conditions listed below: - Mount the refinet joint so that it branches either horizontally or vertically. - Mount the refnet header so that it branches horizontally. ### 10.3. Guidelines for handling stop valve Cautions on handling the stop valve - Make sure to keep both stop valves open during operation. - The figure below shows the name of each part required in handling the stop valve. - Service port and service port cover - 2 Stop valve - 3 Field piping connection - 4 Stop valve cover ■ The stop valve is factory closed. How to use the stop valve ### Opening the stop valve - 1. Remove the valve cover. - Insert a hexagon wrench (liquid side: 4 mm, suction and discharge side: 8 mm) into the stop valve and turn the stop valve counterclockwise. - **3.** When the stop valve cannot be turned any further, stop turning. The valve is now open. ### Closing the stop valve - 1. Remove the valve cover. - Insert a hexagon wrench (liquid side: 4 mm, suction and discharge side: 8 mm) into the stop valve and turn the stop valve clockwise. - When the stop valve cannot be turned any further, stop turning. The valve is now closed. ### Cautions on handling the stop valve cover - The stop valve cover is sealed where indicated by the arrow. Take care not to damage it. - After handling the stop valve, make sure to tighten the stop valve cover securely. For the tightening torque, refer to the table below. ■ Check for refrigerant leaks after tightening the stop valve cover. ### Cautions on handling the service port - Always use a charge hose equipped with a valve depressor pin, since the service port is a Schrader type valve. - After handling the service port, make sure to tighten the service port cover securely. For the tightening torque, refer to the table below. - Check for refrigerant leaks after tightening the service port cover. ### Tightening torques | | Tightening torque (N•m) | | | | | |----------------------------------|-------------------------|----------|----|-----|-----| | Item | 8 | 10 | 12 | 14 | 16 | | Stop valve cover, liquid side | | 13.5~16. | 5 | 18~ | -22 | | Stop valve cover, suction side | | | | | | | Stop valve cover, discharge side | 22.5~27.5 | | | | | | Service port cover | 11.5~13.9 | | | | | ### 10.4. Leak test and vacuum drying It is very important that all refrigerant piping work is done before the units (outdoor or indoor) are powered on. When the units are powered on, the expansion valves will initialize. This means that they will close. Leak test and vacuuming drying of field piping and indoor units is impossible when this happens. Therefore, there will be explained 2 methods for initial installation, leak test and vacuuming drying. ### General guidelines - Use a 2-stage vacuum pump with a non-return valve which can evacuate to a gauge pressure of -100.7 kPa (5 Torr absolute, -755 mm Hg). - Connect the vacuum pump to the service port of all 3 stop valves to increase efficiency (refer to "Set-up" on page 17). Do not purge the air with refrigerants. Use a vacuum pump to evacuate the installation. Installation of refrigerant piping, leak test, vacuuming **before** electrical installation is done (regular installation method) When all piping work is complete, it is necessary to: - check for any leakages in the refrigerant piping and - to perform vacuum drying to remove all moisture in the refrigerant piping. If there is a possibility of moisture being present in the refrigerant piping (for example, rainwater may have entered the piping), first carry out the vacuum drying procedure below until all moisture has been removed and consider the installation of a liquid dryer. All piping inside the unit has been factory tested for leaks. Only field installed refrigerant piping needs to be checked. Therefore, make sure that all the outdoor unit stop valves are firmly closed before performing leak test or vacuum drying. Make sure that **ALL** indoor unit stop valves are **OPEN** (no outdoor unit stop valves!) before you start leak test and vacuuming. See "Set-up" on page 17, "Leak test" on page 17, and "Vacuum drying" on page 17. Installation of refrigerant piping, leak test, vacuuming **after** electrical installation is done on any indoor or outdoor unit Apply outdoor unit setting 2-21=1 (see page 29) before starting leak test and vacuuming. This setting will open all field expansion valves and solenoid valves to guarantee a R410A piping pathway. - Make sure that ALL indoor unit stop valves are OPEN (no outdoor unit stop valves!) before you start leak test and vacuuming. - Make sure that ALL indoor units connected to the outdoor unit are powered on. - Wait untill the outdoor unit has finished the initialisation. When all piping work is complete, it is necessary to: - check for any leakages in the refrigerant piping and - to perform vacuum drying to remove all moisture in the refrigerant piping. If there is a possibility of moisture being present in the refrigerant piping (for example, rainwater may have entered the piping), first carry out the vacuum drying procedure below until all moisture has been removed and consider the installation of a liquid dryer. All piping inside the unit has been factory tested for leaks. Only field installed refrigerant piping needs to be checked. Therefore, make sure that all the stop valves are firmly closed before performing leak test or vacuum drying. See "Set-up" on page 17, "Leak test" on page 17, and "Vacuum drying" on page 17. - 1 Pressure reducing valve - 2 Nitrogen - 3 Refrigerant R410A tank (siphon system) - 4 Measuring instrument - 5 Vacuum pump - 6 Suction pipe stop valve - 7 Outdoor unit - 8 Liquid pipe stop valve - 9 Indoor unit(s) - 10 Charge hose - 11 Refrigerant charge port - 12 Discharge pipe stop valve - Valve - · Stop valve service port The connections to the indoor units and all indoor units should also be leak and vacuum tested. Keep the stop valves of the indoor units open as well. Refer to the indoor unit installation manual for more details. Leak test and vacuum drying should be done before the power supply is set to the unit. See also the flow chart earlier described in this chapter. ### Leak test The leak test must satisfy specification EN 378-2. - 1 Vacuum leak test - 1.1 Evacuate the system from the liquid, gas and high pressure piping to -100.7 kPa (5 Torr) for more than 2 hours. - **1.2** Once reached, turn off the vacuum pump and check that the pressure does not rise for at least 1 minute. - 1.3 Should the pressure rise, the system may either contain moisture (see vacuum drying below) or have leaks. - 2 Pressure leak test - 2.1 Break the vacuum by pressurizing with nitrogen gas to a minimum gauge pressure of 0.2 MPa (2 bar). Never set the gauge pressure higher than the maximum operation pressure of the unit, i.e. 4.0 MPa (40 bar). - 2.2 Test for leaks by applying a bubble test solution to all piping connections. Make sure to use a recommended bubble test solution from your wholesaler. Do not use soap water, which may cause cracking of flare nuts (soap water may contain salt, which absorbs moisture that will freeze when the piping gets cold), and/or lead to corrosion of flared joints (soap water may contain ammonia which causes a corrosive effect between the brass flare nut and the copper flare). 2.3 Discharge all nitrogen gas. ### Vacuum drying To remove all moisture from the system, proceed as follows: - Evacuate the system for at least 2 hours to a target vacuum of -100.7 kPa. - 2 Check that, with the vacuum pump turned off, the target vacuum is maintained for at least 1 hour. - 3 Should you fail to reach the target vacuum within 2 hours or maintain the vacuum for 1 hour, the system may contain too much moisture. - In that case, break the vacuum by pressurizing with nitrogen gas to a gauge pressure of 0.05 MPa (0.5 bar) and repeat steps 1 to 3 until all moisture has been removed. - 5 The stop valves can now be opened, and/or additional refrigerant can be charged (see "13.4. Method for adding refrigerant" on page 24). After opening the stop valve, it is possible that the pressure in the refrigerant piping does not rise. This might be caused by e.g. the closed state of the expansion valve in the outdoor unit circuit, but does not present any problem for correct operation of the unit. The connections to the indoor units and all indoor units should also be leak and vacuum tested. Keep the stop valves of the indoor units open as well. Refer to the indoor unit installation manual for more details. Leak test and vacuum drying should be done before the power supply is set to the unit. If not, see "10.4. Leak test and vacuum drying" on page 16 for more information. ### 11. PIPE INSULATION After finishing the leak test and vacuum drying, the piping must be insulated. Take into account the following points: - Make sure to insulate the connection piping and refrigerant branch kits entirely. - Be sure to insulate liquid, suction, and discharge piping (for all units). - Use heat resistant polyethylene foam which can withstand a temperature of 70°C for liquid piping and polyethylene foam which can withstand a temperature of 120°C for gas piping. - Reinforce the insulation on the refrigerant piping according to the installation environment. | Ambient temperature | Humidity | Minimum thickness | |---------------------|---------------|-------------------| | ≤30°C | 75% to 80% RH | 15 mm | | >30°C | ≥80% RH | 20 mm | Condensation might form on the surface of the insulation. If there is a possibility that condensation on the stop valve might drip down into the indoor unit through gaps in the insulation and piping because the outdoor unit is located higher than the indoor unit, this must be prevented by sealing up the connections. See below. - Insulation material - 2 Caulking, etc. ### 12. ELECTRICAL WIRING WORK ### 12.1. Precautions on electrical wiring work ### **WARNING: Electrical installation** All field wiring and components must be installed by an installer and must comply with the applicable legislation Electrical wiring work recommendations. To persons in charge of electrical wiring work: Do not operate the unit until the refrigerant piping is complete. See "10.4. Leak test and vacuum drying" on page 16. Running the unit before the piping is ready will break the compressor. ### DANGER: ELECTRICAL SHOCK See "2. General Safety precautions" on page 2. ### WARNING - A main switch or other means for disconnection, having a contact separation in all poles, must be incorporated in the fixed wiring in accordance with the applicable legislation. - Use only copper wires. - All field wiring must be carried out in accordance with the wiring diagram supplied with the unit and the instructions given below. - Never squeeze bundled cables and be sure that it does not come in contact with the non-insulated piping and sharp edges. Be sure no external pressure is applied to the terminal connections. - Power supply wires must be attached securely. - If the power supply has a missing or wrong N-phase, equipment will break down. - Be sure to establish an earth. Do not earth the unit to a utility pipe, surge absorber, or telephone earth. Incomplete earth may cause electrical shock. - Be sure to install an earth leakage protector in accordance with the applicable legislation. Failure to do so may cause electric shock or fire. - Be sure to use a dedicated power circuit, never use a power supply shared by another appliance. - When installing the earth leakage protector be sure that it is compatible with the inverter (resistant to high frequency electric noise) to avoid unnecessary opening of the earth leakage protector. - As this unit is equipped with an inverter, installing a phase advancing capacitor not only will deteriorate power factor improvement effect, but also may cause a capacitor abnormal heating accident due to highfrequency waves. Therefore, never install a phase advancing capacitor. - Be sure to install the required fuses or circuit breakers. - Do not operate until refrigerant piping work is completed. (If operated before completion of the piping work, the compressor may break down.) - Never remove a thermistor, sensor, etc., when connecting power wiring and transmission wiring. (If operated without thermistor, sensor, etc., the compressor may break down.) EMRQ8~16AAY1 Daikin Altherma outdoor unit 4PW61262-1 – 06.2010 Installation manual 18 - The reversed phase protection detector of this product only functions when the product starts up. Consequently reversed phase detection consequently is not performed during normal operation of the product. - The reversed phase protection detector is designed to stop the product in the event of an abnormality when the product is started up. - Replace two of the three phases (L1, L2, and L3) during reverse-phase protection circuit operation. - If there exists the possibility of reversed phase after a momentary black out and the power goes on and off while the product is operating, attach a reversed phase protection circuit locally. Running the product in reversed phase can break the compressor and other parts. ### Point of attention regarding quality of the public electric power supply. This equipment complies with respectively: - EN/IEC 61000-3-11<sup>(1)</sup> provided that the system impedance $Z_{sys}$ is less then or equal to $Z_{max}$ . - EN/IEC 61000-3-12<sup>(2)</sup> provided that the short-circuit power S<sub>sc</sub> is greater than or equal to the minimum S<sub>sc</sub> value at the interface point between the user's supply and the public system. It is the responsibility of the installer or user of the equipment to ensure, by consultation with the distribution network operator if necessary, that the equipment is connected only to a supply with respectively: - Z<sub>sys</sub> less than or equal to Z<sub>max</sub> - S<sub>sc</sub> greater than or equal to the minimum S<sub>sc</sub> value. | | $Z_{max}\left(\Omega\right)$ | Minimum S <sub>sc</sub> value | |--------|------------------------------|-------------------------------| | EMRQ8 | _ | 889 kVA | | EMRQ10 | 0.27 | 843 kVA | | EMRQ12 | 0.27 | 850 kVA | | EMRQ14 | _ | 2045 kVA | | EMRQ16 | _ | 2035 kVA | ### 12.2. Internal wiring - Parts table Refer to the wiring diagram sticker on the unit. The abbreviations used are listed below: | A1P~A8P | Printed circuit board (main, sub 1, sub 2, noise filter, inverter, fan, current sensor) | |------------|-----------------------------------------------------------------------------------------| | BS1~BS5 | .Push button switch (mode, set, return, test, reset) | | C1,C63,C66 | .Capacitor | | E1HC,E2HC | .Crankcase heater | | F1U | .Fuse (DC 650 V, 8 A) | | F1U | .Fuse (T, 3.15 A, 250 V) | | F1U,F2U | .Fuse (T, 3.15 A, 250 V) | | F5U | .Field fuse (field supply) | | F400U | .Fuse (T, 6.3 A, 250 V) | | H1P~H8P | .Pilot lamp | | H2P | .Under preparation or in test operation when blinking | | H2P | .Malfunction detection when light up | | HAP | .Pilot lamp (service monitor - green) | | K1,K3 | .Magnetic relay | European/International Technical Standard setting the limits for voltage changes, voltage fluctuations and flicker in public low-voltage supply systems for equipment with rated current ≤75 A. systems for equipment with rated current ≤75 A. (2) European/International Technical Standard setting the limits for harmonic currents produced by equipment connected to public low-voltage systems with input current >16 A and ≤75 A per phase. | K1R | Magnetic relay (K2M, Y4S) | |-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Magnetic contactor (M1C) | | | Magnetic relay (Y5S) | | | Magnetic relay (Y1S) | | | Magnetic relay (Y8S) | | | Magnetic relay (Y2S) | | | Magnetic relay (for option) | | | Magnetic relay (Y7S) | | | Magnetic relay (E1HC, E2HC) | | | Magnetic relay (Y3S) | | L1R,L2R | | | • | Motor (compressor) | | | | | M1F,M2F | | | | Switching power supply | | | Earth leakage protector (field supply) | | | Phase reversal detection circuit | | | Thermistor (air, fin) | | H21~H151 | Thermistor (H/E gas 1, H/E de-icer 1, sub cool H/E gas 1, sub cool H/E liquid, H/E liquid 1, suction 1, liquid 1, suction 2, H/E gas 2, H/E de-icer 2, sub cool H/E gas 2, liquid 2, H/E liquid 2) | | R10 | Resistor (current sensor) | | R31T,R32T | Thermistor (discharge) (M1C,M2C) | | R50,R59 | Resistor | | R90 | Resistor (current sensor) | | R95 | Resistor (current limiting) | | S1NPH | Pressure sensor (high) | | S1NPL | Pressure sensor (low) | | S1PH,S2PH | Pressure switch (high) | | SD1 | Safety devices input | | T1A | Current sensor | | V1R | Diode bridge | | V1R,V2R | Power module | | X1A~X9A | Connector | | X1M | Terminal strip (power supply) | | X1M | Terminal strip (control) | | X2M | Terminal strip (relay) | | | Electronic expansion valve (main 1, sub cool 1, main 2, charge, sub cool 2) | | Y1S~Y10S | Solenoid valve (RMTG, 4 way valve-H/E gas 1, RMTL, hot gas, EV bypass 1, RMTT, RMTO, 4 way valve-H/E gas 2, EV bypass 2) | | Z1C~Z12C | Noise filter (ferrite core) | | Z1F | Noise filter (with surge absorber) | | L1,L2,L3 | Live | | N | Neutral | | | Field wiring | | | Terminal strip | | 00 | · | | -> | | | | Protective earth (screw) | | • | | | BLK | | | BLU | | | BRN | | | GRN | Green | | GRY | Grey | |-----|--------| | ORG | Orange | | PNK | Pink | | RED | Red | | WHT | White | | YLW | Yellow | NOTE The wiring diagram on the outdoor unit is only for the outdoor unit. For the indoor unit or optional electrical components, refer to the wiring diagram of the indoor unit. ### 12.3. System overview of field wiring Field wiring consists out of power supply (always including earth) and indoor-outdoor communication (=transmission) wiring. ### 12.4. Requirements The power supply must be protected with the required safety devices, i.e. a main switch, a slow blow fuse on each phase and an earth leakage protector in accordance with the applicable legislation. Selection and sizing of the wiring should be done in accordance with the applicable legislation based on the information mentioned in the table below: | | Phase and frequency | Voltage | Maximum current | Recommended fuses | |--------|---------------------|-----------|-----------------|-------------------| | EMRQ8 | 3N~ 50 Hz | 380~415 V | 17.1 A | 20 A | | EMRQ10 | 3N~ 50 Hz | 380~415 V | 22.1 A | 25 A | | EMRQ12 | 3N~ 50 Hz | 380~415 V | 22.3 A | 25 A | | EMRQ14 | 3N~ 50 Hz | 380~415 V | 32.8 A | 40 A | | EMRQ16 | 3N~ 50 Hz | 380~415 V | 33.0 A | 40 A | Transmission wiring should have a line section of 0.75~1.25 mm<sup>2</sup>. For the transmission wiring, the maximum wiring length is 1000 m. If the total transmission wiring exceeds these limits, it may result in communication error. ### 12.5. Routing It is important to keep the power supply and the transmission wiring separated from each other. In order to avoid any electrical interference the distance between both wiring should always be at least 25 mm. ### Transmission wiring routing The transmission wiring should be wrapped and routed together with the field piping as follows: - 1 Liquid pipe - 2 Discharge gas pipe - 3 Finishing tape - 4 Suction gas pipe - 5 Transmission wiring - 6 Insulation material Field piping can be routed from left, right or front. Refer to "10.2. Connecting the refrigerant piping" on page 13. ### Power supply routing The power supply can be routed from the front, left and right side. 1 Left and right side. The plastic conduit hole on the left and right side can be opened as follows: - 1 Power supply inside a conduit - 2 Conduit - 3 Power supply - 4 Cut off the shaded zones before usage - 5 Through hole cover ### Front side. In order to route the power supply from the front side, the available knockout holes can be used: - 1 Knockout hole - 2 Burn - 3 If there are any possibilities that small animals enter the system through the knockout holes, plug the holes with packing materials (to be prepared on-site). ### Precautions when knocking out knockout holes - To punch a knockout hole, hit on it with a hammer. - After knocking out the holes, we recommend removing any burrs and paint the edges and areas around the holes using repair paint to prevent rusting. - When passing electrical wiring through the knockout holes, prevent damage to the wires by wrapping the wiring with protective tape, putting the wires through field supplied protective wire conduits at that location, or install suitable field supplied wire nipples or rubber bushings into the knockout holes ### 12.6. Connection This chapter gives an explanation how to route and connect the wiring within the unit. 1 Routing inside the unit For routing of the wiring inside the unit, please follow the figure below: - 1 Power supply - 2 Transmission wiring - 3 Routing out power supply through the right side of the unit. - Secure a clearance of 25 mm or more between power supply and transmission wiring. - 5 Clamp the wiring with field supplied clamps. - 6 Routing out transmission wiring through the front of the unit. - 7 Routing out the power supply through the front of the unit. - 8 Routing out the power supply through the left side of the unit. - 9 Earth wire from power supply. - When wiring, pay attention not to detach the acoustic insulators from the compressor. - 2 Connection of wiring to terminals. ### 2.1 Transmission wiring - 1 Fix to the indicated plastic brackets using field supplied clamping material. - 2 Wiring between the units (Indoor outdoor) (F1+F2 left) - 3 Internal transmission wiring (Q1+Q2) - 4 Plastic bracket - 5 Field supplied clamps Care should be taken for connecting the wires to the terminal block. See the table below for the tightening torque of the transmission wiring terminals. | Screw size | Tightening torque (N•m) | |------------|-------------------------| | M3.5 (A1P) | 0.80~0.96 | - Never connect the power supply to transmission wiring terminal block. Otherwise the entire system may break down. - Be careful about polarity of the transmission wiring. - 2.2 Power supply The power supply must be clamped to the plastic bracket using field supplied clamp material. The green and yellow striped wire must be used for earthing. (refer figure below) - 1 Power supply (380~415 V, 3N~ 50 Hz) - 2 Earth leakage protector - 3 Fuse - 4 Earth wire - 5 Power supply terminal block - 6 Connect each power wire RED to L1, WHT to L2, BLK to L3 and BLU to N - 7 Earth wire (GRN/YLW) - 8 Clamp the power supply to the plastic bracket using a field supplied clamp to prevent external force being applied to the terminal. - 9 Clamp (field supply) - 10 Cup washer - 11 When connecting the earth wire, it is recommended to perform curling. - 12 Electric component box (1) - 13 Electric component box (2) It is not required to open electric component box (2) for installation. DAIKIN - When routing earth wires, secure clearance of 25 mm or more away from compressor lead wires. Failure to observe this instruction properly may adversely effect correct operation of other units connected to the same earth. - When connecting the power supply, the earth connection must be made before the current-carrying connections are established. When disconnecting the power supply, the current-carrying connections must be separated before the earth connection is. The length of the conductors between the power supply stress relief and the terminal block itself must be such that the current-carrying wires are tautened before the earth wire is in case the power supply is pulled loose from the stress relief. ### Precautions when laying power wiring - For wiring, use the designated power wire and connect firmly, then secure to prevent outside pressure being exerted on the terminal board. - Use an appropriate screwdriver for tightening the terminal screws. A screwdriver with a small head will damage the head and make proper tightening impossible. - Over-tightening the terminal screws may break them. - See the table below for tightening torque for the terminal screws. | Tightening torque (N•m | n) | |---------------------------|---------| | M8 (Power terminal block) | 55.70 | | M8 (Earth) | 5.5~7.3 | ### Recommendations when connecting the earth When pulling the earth wire out, wire it so that it comes through the cut out section of the cup washer. (An improper earth connection may prevent a good earthing from being achieved.) ### 13. CHARGING REFRIGERANT ### 13.1. Precautions ### **ATTENTION** - Refrigerant cannot be charged until field wiring has been completed. - Refrigerant may only be charged after performing the leak test and the vacuum drying. - When charging a system, care shall be taken that its maximum permissible charge is never exceeded, in view of the danger of liquid hammer. - Charging with an unsuitable substance may cause explosions and accidents, so always ensure that the appropriate refrigerant R410A is charged. - Refrigerant containers shall be opened slowly. - Always use protective gloves and protect your eyes when charging refrigerant. - When the refrigerant system is to be opened, refrigerant must be treated according to the applicable legislation. ### **DANGER: ELECTRICAL SHOCK** See "2. General Safety precautions" on page 2. - To avoid compressor breakdown. Do not charge the refrigerant more than the specified amount. - This outdoor unit is factory charged with refrigerant and depending on pipe sizes and pipe lengths some systems require additional charging of refrigerant. See "13.3. Calculating the additional refrigerant charge" on page 23. - In case re-charge is required, refer to the nameplate of the unit. It states the type of refrigerant and necessary amount. ### 13.2. Important information regarding the refrigerant used This product contains fluorinated greenhouse gases covered by the Kyoto Protocol. Do not vent gases into the atmosphere. Refrigerant type: R410A GWP<sup>(1)</sup> value: 1975 (1) GWP = global warming potential Please fill in with indelible ink, - ① the factory refrigerant charge of the product, - ② the additional refrigerant amount charged in the field and - ①+② the total refrigerant charge on the fluorinated greenhouse gases label supplied with the product. The filled out label must be adhered on the inside of the product and in the proximity of the product charging port (e.g. on the inside of the service cover). - 1 factory refrigerant charge of the product: see unit name plate - 2 additional refrigerant amount charged in the field - 3 total refrigerant charge - 4 contains fluorinated greenhouse gases covered by the Kyoto Protocol - 5 outdoor unit - 6 refrigerant cylinder and manifold for charging DAIKIN National implementation of EU regulation on certain fluorinated greenhouse gases may require to provide the appropriate official national language on the unit. Therefore, an additional multilingual fluorinated greenhouse gases label is supplied with the unit. Sticking instructions are illustrated on the backside of that label. There are 2 methods of calculating the additional refrigerant charge. Please choose the right method below. System with the same indoor unit types ### How to calculate the additional refrigerant to be charged - When selecting EKHVMRD as indoor unit type (all indoor units are of this type), select correction factor A=1. - When selecting EKHVMYD as indoor unit type (all indoor units are of this type), select correction factor A=1.1. | | Indoor unit | | | | |---|-------------|---------|--|--| | | EKHVMRD | EKHVMYD | | | | Α | 1 | 1.1 | | | Additional refrigerant to be charged R (kg) R should be rounded off in units of 0.1 kg $R = [((X_1 \times \emptyset 15.9) \times 0.18) + ((X_2 \times \emptyset 12.7) \times 0.12) + ((X_3 \times \emptyset 9.5) \times 0.059)] \times \mathbf{A}$ X<sub>1...3</sub>= Total length (m) of liquid piping size at Øa ### For EKHVMRD System liquid piping System discharge piping ### ■ For EKHVMYD System liquid piping System discharge piping System suction piping ### System with different indoor unit types ### How to calculate the additional refrigerant to be charged When combining different indoor unit types, additional refrigerant amount calculation should be done based on the used pipe system. - When using 2 pipe system (for connection of EKHVMRD), please use correction factor A=1. - When using 3 pipe system (for connection of EKHVMYD), please use correction factor A=1.1. | | Pipe system | | | |---|-----------------------------|-----|--| | | 2 pipe system 3 pipe system | | | | Α | 1 | 1.1 | | $R = \sum R_x$ $$R_x = [((X_1 \times \varnothing 15.9) \times 0.18) + ((X_2 \times \varnothing 12.7) \times 0.12) + ((X_3 \times \varnothing 9.5) \times 0.059)] \times \mathbf{A}$$ X<sub>1...3</sub>= Total length (m) of liquid piping size at Øa See the example below for more information. ### Example Unit 1~5: EKHVMRD (2 pipe) Unit 7: EKHVMRD (2 pipe) Unit 6+8: EKHVMYD (3 pipe) ### System liquid piping ### System discharge piping ### System suction piping | Distance | Correction factor (A) | Pipe system | |-----------------|-----------------------|-------------| | a+b+c+d+e+f+g+p | 1.1 | 3 | | h+i+j+k+l+n | 1 | 2 | | m | 1.1 | 3 | | Refnet | Refnet type | |-------------|-------------| | A+B+C+D+E+G | KHRQ22* | | F | KHRQ23* | Additional refrigerant to be charged R (kg) R should be rounded off in units of 0.1 kg $R = R_1 + R_2 + R_3$ $R_1\sim(a+b+c+d+e+g)$ $R_1 = [((X_1 \times \emptyset 15.9) \times 0.18) + ((X_2 \times \emptyset 12.7) \times 0.12) + ((X_3 \times \emptyset 9.5) \times 0.059)] \times 1.1$ $R_2 \sim (h+i+j+k+l+n)$ $R_2 = [((X_1 \times \varnothing 15.9) \times 0.18) + ((X_2 \times \varnothing 12.7) \times 0.12) + ((X_3 \times \varnothing 9.5) \times 0.059)] \times 1$ $R_{3} \sim (m)$ $R_3 = [((X_1 \times \emptyset 15.9) \times 0.18) + ((X_2 \times \emptyset 12.7) \times 0.12) + ((X_3 \times \emptyset 9.5) \times 0.059)] \times 1.1$ X<sub>1 3</sub>= Total length (m) of liquid piping size at Øa ### 13.4. Method for adding refrigerant ### Precautions when adding refrigerant Be sure to charge the specified amount of refrigerant in liquid state. Since this refrigerant is a mixed refrigerant, adding it in gas form may cause the refrigerant composition to change, preventing normal operation. Before charging, check whether the refrigerant cylinder is equipped with a siphon tube or not. Charge the liquid refrigerant with the cylinder in upright position. Charge the liquid refrigerant with the cylinder in up-side-down position. Be sure to use tools exclusively for R410A to ensure required pressure resistance and to prevent foreign materials from mixing into the system. Charging with an unsuitable substance may cause explosions and accidents, so always make sure that the appropriate refrigerant (R410A) is charged. Refrigerant containers must be opened slowly. - When charging a system, charging over the permissible quantity can cause liquid hammer. - Always use protective gloves and protect your eyes when charging refrigerant. ### Charging method As explained during vacuum drying method, once vacuum drying is finished, stop valves can be opened. If the indoor units are all **heating only units**, your system is a 2 pipe system **(no 3 pipe)**. In this case, the suction stop valve should remain closed at all times. For opening and closing of the stop valves, please refer to "How to use the stop valve" on page 15. Once the stop valves are opened, the refrigerant charging is possible following the procedure below: - 1 Calculate the amount of refrigerant to be added using the formula mentioned in "13.3. Calculating the additional refrigerant charge" on page 23. - The first 10 kg of refrigerant can be charged without outdoor unit operation. If the additional refrigerant amount is smaller than 10 kg, perform the precharging procedure as explained in step 2 below. If the additional refrigerant charge is larger than 10 kg, skip step 2 and perform step 3 till the end of the procedure. - 2 Precharging can be done without compressor running by connecting the refrigerant bottle only to the liquid stop valve. Make sure that the other stop valves (discharge and suction gas stop valves) are closed: - 1 Pressure reducing valve - 2 Nitrogen - 3 Refrigerant R410A tank (siphon system) - 4 Measuring instrument - 5 Vacuum pump - 6 Gas pipe stop valve - 7 Outdoor unit - 8 Liquid pipe stop valve - 9 Indoor unit(s) - 10 Charge hose - 11 Refrigerant charge port - 12 Discharge pipe stop valve - Valve - Stop valve service port - 3 If the total amount of refrigerant could not be charged by precharging, then connect the refrigerant bottle to the refrigerant charging port as described in the figure above. - 4 Make sure to open all 3 stop valves of the outdoor unit (refer to "How to use the stop valve" on page 15). - 5 Turn on the power of the indoor unit and outdoor unit. - Take all the precautions mentioned in "14. Start-up and configuration" on page 25 into account. - To be able to do this operation, the outdoor unit should be set in mode 2. Refer to "Field settings by push buttons" on page 27 for further explanation on how to do the necessary settings. - 6 Push the **BS1 MODE** button for 5 sec, the H1P LED is on ☼. 7 Push the BS2 SET button 20 times until following LED combination is reached: - 8 Push the BS3 RETURN button to confirm setting 2-20 above. - 9 Push the BS2 SET button to change the charge mode from OFF (OFF) to ON (ON). LED indication should change as follows | | | H1P | H2P | НЗР | H4P | H5P | Н6Р | Н7Р | |-----|-----|--------------------|-----|-----|-----|-----|-----|-----| | OFF | (a) | Þ | • | • | • | • | • | ₩ | | ON | | <b>\rightarrow</b> | • | • | • | • | ₩ | • | (a) This setting = factory setting - 10 Push the BS3 RETURN button and the setting is defined. - 11 Push the BS3 RETURN button again, and the refrigerant charging operation will start. - 12 After charging the specified quantity of refrigerant, press the BS3 RETURN button to stop the operation. The operation will automatically stop within 30 minutes. If charging is not completed after 30 minutes, set and perform the additional refrigerant charging operation again. ### Checks after adding refrigerant - Are the stop valves for liquid, discharge, and suction open? - Is the amount of refrigerant, that has been added, recorded on the refrigerant charge label? - Make sure to open the stop valves after charging the refrigerant. - Operating with the stop valves closed will damage the compressor. - If the indoor units are all heating only units, your system is a 2 pipe system (no 3 pipe). In this case, the suction stop valve should remain closed at all times. ### 14. START-UP AND CONFIGURATION ### **ATTENTION** It is important that all information in this chapter is read sequentially by the installer and that the system is configured as applicable. ### DANGER: ELECTRICAL SHOCK See "2. General Safety precautions" on page 2. ### 14.1. Checks before initial start up After the installation of the unit, first check the following items. Once all below checks are fulfilled, the unit must be closed, only then can the unit be powered up. ### 1 Installation Check that the unit is properly installed, to avoid abnormal noises and vibrations when starting up the unit. ### 2 Field wiring Be sure that the field wiring has been carried out according to the instructions described in the chapter "12. Electrical wiring work" on page 18, according to the wiring diagrams and according to the applicable legislation. ### 3 Power supply voltage Check the power supply voltage on the local supply panel. The voltage must correspond to the voltage on the identification label of the unit. ### 4 Earth wiring Be sure that the earth wires have been connected properly and that the earth terminals are tightened. 5 Insulation test of the main power circuit Using a mega tester for 500 V, check that the insulation resistance of 2 $M\Omega$ or more is attained by applying a voltage of 500 V DC between power terminals and earth. Never use the mega tester for the transmission wiring. 6 Fuses, circuit breakers, or protection devices Check that the fuses, circuit breakers, or the locally installed protection devices are of the size and type specified in the chapter "12. Electrical wiring work" on page 18. Be sure that neither a fuse nor a protection device has been bypassed. ### 7 Internal wiring Visually check the switch box and the inside of the unit on loose connections or damaged electrical components. 8 Pipe size and pipe insulation Be sure that correct pipe sizes are installed and that the insulation work is properly executed. 9 Stop valves Be sure that the stop valves are open on both liquid, suction, and discharge side. If the indoor units are all **heating only units**, your system is a 2 pipe system **(no 3 pipe)**. In this case, the suction stop valve should remain closed at all times. 10 Transportation stay Be sure that the transportation stays are removed from the compressors. The 4 yellow transportation stays installed over the compressor legs for protecting the unit during transport must be removed. Proceed as shown in the figure and description below: - A Compressor - B Fixing nut - C Transportation stay - 1. Slightly loosen the fixing nut (B). - 2. Remove the transportation stay (C). - 3. Tighten the fixing nut (B) again. ### CAUTION If the unit is operated with the transportation stays still in place, abnormal vibration or noise may be generated. ### 11 Damaged equipment Check the inside of the unit on damaged components or squeezed pipes. ### 12 Refrigerant leak Check the inside of the unit on refrigerant leakage. If there is a refrigerant leak, try to repair the leak. If the recovery is unsuccessfull, call your local dealer. Do not touch any refrigerant which has leaked out of refrigerant piping connections. This may result in frostbite. ### 13 Oil leak Check the compressor for oil leakage. If there is an oil leak, try to repair the leak. If the repairing is unsuccessfull, call your local dealer. ### 14 Air inlet/outlet Check that the air inlet and outlet of the unit is not obstructed by paper sheets, cardboard, or any other material. ### 15 Additional refrigerant charge The amount of refrigerant to be added to the unit shall be written on the included "Added refrigerant" plate and attached to the rear side of the front cover. ### 14.2. Field settings The operation of the outdoor unit can further be defined by changing some settings. This can be done through push buttons on the outdoor unit PCB as described below. ### How to operate the push buttons 1 Open the front plate of the outdoor unit and access the switch box on the right side. ### Push buttons When carrying out field settings, remove the inspection cover (1). Operate the push buttons with an insulated stick (such as a ball-point pen) to avoid touching live parts. Make sure to re-attach the inspection cover (1) into the switch box cover (2) after the job is finished. Make sure that all outside panels, except for the panel on the electric component box (1), are closed while Close the lid of the electric component box firmly before turning on the power. When opening the inspection cover (1), following LEDs and push buttons are visible: - LED H1P~H8F - Push buttons BS1~BS5 Different modes as explained below are set by pushing on the push buttons BS1~BS5. By pushing the push buttons, the LEDs will display the different modes. Throughout the manual, the status of the LEDs is indicated as follows: OFF ON ď Blinking The functions of the push buttons are as follows: | | MODE | TEST:- | C/H SELECT | | LNOD | DEMAND | | |---|------|---------|------------|--------|-------|---------|--------| | | MODE | HWL: -☆ | IND | MASTER | SLAVE | L.N.O.P | DEMAND | | ſ | • | • | ✡ | • | • | • | • | | | H1P | H2P | H3P | H4P | H5P | H6P | H7P | | Ī | | - DO4 1 | DO0 | DOO | D0.4 | I DOE | 7 | MULTI Ö H8P | BS1 | BS2 | BS3 | BS4 | BS5 | |------|-----|--------|------|-------| | MODE | SET | RETURN | TEST | RESET | | | | | | | **BS1 MODE** For changing the set mode **BS2 SET** For field setting **BS3 RETURN** For field setting **BS4TEST** For test operation **BS5 RESET** For resetting the address when the wiring is changed or when an additional indoor unit is installed Once the above is checked and confirmed, turn on the power supply of the outdoor unit and all indoor units. If the communication between indoor units and outdoor unit is normal, the LED state will be as above. Make sure the power supply of the outdoor unit is set 6 hours before actual operation of the system to power the cranckcase heater. Once the above is confirmed, the mode 2 can be set using BS1 MODE button as explained below. For setting mode 2: Press the BS1 MODE button for 5 seconds, the H1P LED is on ... If you get confused in the middle of the setting process, push the BS1 MODE button. This returns to setting mode 1 (H1P LED is off). ### Field settings by push buttons The following setting can be set with push buttons as explained in "How to operate the push buttons" on page 26. High static pressure setting. If the outdoor unit is installed indoors and the outdoor unit fan is ducted, to guarantee enough airflow, the outdoor unit fan rpm must be increased. Once in mode 2 as explained above (H1P LED is on), push 18 times on the **BS2 SET** button until following LED state is shown: Push the BS3 RETURN button to define the required setting. The setting can then be changed by pushing on the **BS2 SET** button. The above mentioned setting can be set **ON** (ON) or **OFF** (OFF). Following LED state is shown for the different settings: (a) This setting = factory setting Pushing the BS3 RETURN button defines the setting. Finally, when pushing the $\mbox{\bf BS3}$ $\mbox{\bf RETURN}$ button again the operation starts according to the setting. Pushing **BS1 MODE** button will get you back to the initial led start point: ### **WARNING** Settings which are familiar for VRV series may **NOT** be applied to this Daikin Altherma outdoor unit. ### 14.3. Test operation After installation and once the field settings are defined, the installer is obliged to verify correct operation. Therefore a test run must be performed according to the procedures described below. Precautions before starting test operation During test operation, the outdoor unit and the indoor units will start up. ■ Make sure that the preparations of all indoor units are finished (field piping, electrical wiring, air purge,...). See installation manual of the indoor units. Do not insert fingers, rods or other objects into the air inlet or outlet. When the fan is rotating at high speed, it will cause injury. Do not perform the test operation while working on the indoor units. ### **WARNING** - During tests never pressurize the appliances with a pressure higher than the maximum allowable pressure (as indicated on the nameplate of the unit). - If refrigerant gas leaks, ventilate the area immediately. Toxic gas may be produced if refrigerant gas comes into contact with fire. - Never directly touch any accidental leaking refrigerant. This could result in severe wounds caused by frostbite. - Test run is possible for ambient temperatures between -20°C and 35°C. ### DANGER: DO NOT TOUCH PIPING AND INTERNAL PAPES See "2. General Safety precautions" on page 2. ### **DANGER: ELECTRICAL SHOCK** See "2. General Safety precautions" on page 2. Provide a logbook and machine card. In accordance with the applicable legislation, it may be necessary to provide a logbook with the equipment containing at least: info on maintenance, repair work, results of tests, stand-by periods, .... Also, at least, following information shall be provided at an accessible place of the system: - instructions for shutting down the system in case of an emergency - name and address of fire department, police and hospital - name, address and day and night telephone numbers for obtaining service. In Europe, EN378 provides the necessary guidance for this logbook. Note that during the first running period of the unit, required power input may be higher. This phenomenon originates from the compressor that requires a 50 hour run elapse before reaching smooth operation and stable power consumption. Reason is that the scroll is made out of iron and that it takes some time to smooth the surfaces that make contact. To protect the compressor, be sure to turn on the power supply 6 hours before starting operation. ### Test operation The procedure below describes the test operation of the complete system. This operation checks and judges following items: - Check of the stop valves opening - Check of wrong wiring - Check of refrigerant overcharge - Check of indoor unit operation On top of this test operation, the indoor unit operation can also be checked separately. Refer to the indoor unit installation manual for more details. - Make sure to carry out the test operation after the first installation. Otherwise, the malfunction code U3 will be displayed on the remote controller and normal operation can not be carried out - Abnormalities on indoor units can not be checked for each unit separately. After the test operation is finished, check the indoor units one by one by performing a normal operation using the remote controller. - 1 Close all front panels except the front panel of the electric component box. - 2 Turn ON the power to the outdoor unit and the connected indoor units Be sure to turn on the power 6 hours before operation in order to have power running to the crankcase heater and to protect the compressor. - 3 Push BS4 TEST button for 5 seconds or more. The unit will start test operation. - The test operation is automatically carried out in heating mode, the H2P LED will blink and the messages "Test operation" and "Under centralized control" will display on the remote controller. - It may take 10 minutes to bring the state of the refrigerant uniform before the compressor starts. - During the test operation, the refrigerant running sound or the magnetic sound of a solenoid valve may become loud and the LED display may change, but these are not malfunctions. - During the test operation, it is not possible to stop the unit operation from a remote controller. To abort the operation, press the BS3 RETURN button. The unit will stop after ±30 seconds. Test run may take up to 1 hour or more. - 4 Close the front panel in order to let it not be the cause of misjudgement. - 5 Check the test operation results by the LED display on the outdoor unit. | Normal completion | |---------------------| | Abnormal completion | | H1P | H2P | НЗР | H4P | Н5Р | Н6Р | Н7Р | |-----|--------------------|--------------------|-----|-----|-----|-----| | • | • | <b>\rightarrow</b> | • | • | • | • | | • | <b>\rightarrow</b> | <b>\rightarrow</b> | • | • | • | • | 6 When the test operation is fully completed, normal operation will be possible after 5 minutes. Otherwise, refer to "Correcting after abnormal completion of the test operation" on page 28 to take actions for correcting the abnormality. ### Correcting after abnormal completion of the test operation The test operation is only completed if there is no malfunction code displayed on the remote controller. In case of a displayed malfunction code, perform the following actions to correct the abnormality: Confirm the malfunction code on the remote controller | Installation error | Error code | Remedial action | |-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | The stop valve of an outdoor unit is left closed. | 83225 | Open the stop valve. | | The phases of the power to the outdoor unit is reversed. | Ui | Exchange two of the three phases (L1, L2, L3) to make a positive phase connection. | | No power is supplied to an outdoor or indoor unit (including phase interruption). | LC<br>55<br>87 | Check if the power wiring for the outdoor unit is connected correctly. | | Incorrect interconnections between units. | UF | Check if the refrigerant piping and the unit wiring are consistent with each other. | | Refrigerant overcharge. | E3<br>F6<br>UF | Recalculate the required amount of refrigerant from the piping length and correct the refrigerant charge level by recovering any excessive refrigerant with a refrigerant recovery machine. | | Insufficient refrigerant. | E7<br>F3 | Check if the additional refrigerant charge has been finished correctly. Recalculate the required amount of refrigerant from the piping length and add an adequate amount of refrigerant. | | In case the test operation was interrupted or the unit was operating out of the instructed temperature range, the initial refrigerant detection has failed. | 93 | In case the the test operation was interrupted, perform the test operation again. Perform the test operation again within the instructed temperature range. Test run is possible for ambient temperatures between –20°C and 35°C. | - After correcting the abnormality, press the BS3 RETURN button and reset the malfunction code. - Carry out the test operation again and confirm that the abnormality is properly corrected. - Refer to the installation manual of the indoor unit for other detailed codes. ### 15. OPERATION OF THE UNIT Once the unit is installed and test operation of outdoor unit and indoor units is finished, the operation of the unit can start. For operating the indoor unit, the remote controller of the indoor unit should be switched ON. Refer to the indoor unit operation manual for more details. ### 16. MAINTENANCE AND SERVICE ### 16.1. Maintenance introduction In order to ensure optimal operation of the unit, a number of checks and inspections should be carried out on the unit at regular intervals, preferably yearly. This maintenance shall be carried out by the installer or service agent. ### 16.2. Service precautions ### DANGER: ELECTRICAL SHOCK See "2. General Safety precautions" on page 2. ### **CAUTION** ### when performing service to inverter equipment - 1 Do not open the electric component box cover for 10 minutes after the power supply is turned off. - 2 Measure the voltage between terminals on the terminal block for power supply with a tester and confirm that the power supply is shut off. In addition, measure the points, as shown in the figure below, with a tester and confirm that the voltage of the capacitor in the main circuit is less than 50 V DC. - 3 To prevent damaging the PC-board, touch a noncoated metal part to eliminate static electricity before pulling out or plugging in connectors. - Pull out junction connectors X1A, X2A, X3A, X4A (X3A and X4A of EMRQ14+16 are inside the electric component box (2), refer to the wiring diagram) for the fan motors in the outdoor unit before starting service operation on the inverter equipment. Be careful not to touch the live parts. - (If a fan rotates due to strong wind, it may store electricity in the capacitor or in the main circuit and cause electric shock.) - 5 After the service is finished, plug the junction connecter back in. Otherwise the error code E7 will be displayed on the remote controller and normal operation will not be performed. For details refer to the wiring diagram labelled on the back of the electric component box cover. Pay attention to the fan. It is dangerous to inspect the unit while the fan is running. Be sure to turn off the main switch and to remove the fuses from the control circuit located in the outdoor unit. ### Play it safe! For protection of the PCB, touch the switch box casing by hand in order to eliminate static electricity from your body before performing service. ### 16.3. Service mode operation Refrigerant recovery operation/vacuuming operation is possible by setting the unit in mode 2. Refer to "Field settings by push buttons" on page 27 for details how to set mode 2. When vacuuming/recovery mode is used, check very carefully what should be vacuumed/recovered before starting. See installation manual of the indoor unit for more information about vacuuming and recovery. ### Vacuum method - 1 When the unit is at standstill, set the unit in mode 2 as follows: Push the **BS1 MODE** button for 5 sec, the H1P LED is on 🔅 - 2 Set the unit in mode 2-21: Push the **BS2 SET** button 21 times until following LED combination is reached: - 3 Push the BS3 RETURN button to confirm setting 2-21 above. - 4 Push the BS2 SET button to change the charge mode from OFF (OFF) to ON (ON). LED indication should change as follows: (a) This setting = factory setting - 5 Push the BS3 RETURN button and the setting is defined. - 6 Push the **BS3 RETURN** button again, to confirm this setting. When confirmed, the indoor and outdoor unit expansion valves will fully open. At that moment the H1P LED is **ON** (ON) and the remote controller of all indoor units indicate TEST (test operation) and ... (external control) and the operation will be prohibited. - 7 Evacuate the system with a vacuum pump. - 8 Press BS1 MODE button and reset the setting mode 2. ### Refrigerant recovery operation method This should be done by a refrigerant reclaimer. Follow the same procedure as for vacuuming method. ### 17. CAUTION FOR REFRIGERANT LEAKS ### 17.1. Introduction The installer and system specialist shall secure safety against leakage according to local regulations or standards. The following standards may be applicable if local regulations are not available. This system uses R410A as refrigerant. R410A itself is an entirely safe non-toxic, non-combustible refrigerant. Nevertheless care must be taken to ensure that air conditioning facilities are installed in a room which is sufficiently large. This assures that the maximum concentration level of refrigerant gas is not exceeded, in the unlikely event of major leak in the system and this in accordance to the local applicable regulations and standards. ### 17.2. Maximum concentration level The maximum charge of refrigerant and the calculation of the maximum concentration of refrigerant is directly related to the humanly occupied space in to which it could leak. The unit of measurement of the concentration is kg/m<sup>3</sup> (the weight in kg of the refrigerant gas in 1 m<sup>3</sup> volume of the occupied space). Compliance to the local applicable regulations and standards for the maximum allowable concentration level is required. According to the appropriate European Standard, the maximum allowed concentration level of refrigerant to a humanly space for R410A is limited to $0.44 \ kg/m^3$ . - 1 direction of the refrigerant flow - 2 room where refrigerant leak has occurred (outflow of all the refrigerant from the system) Pay special attention to places, such as a basements, etc. where refrigerant can stay, since refrigerant is heavier than air. ### 17.3. Procedure for checking maximum concentration Check the maximum concentration level in accordance with steps 1 to 4 below and take whatever action is necessary to comply. Calculate the amount of refrigerant (kg) charged to each system separately. - 2 Calculate the volume of the room (m<sup>3</sup>) where the indoor unit is installed. - **3** Calculating the refrigerant density using the results of the calculations in steps 1 and 2 above. If the result of the above calculation exceeds the maximum concentration level, a ventilation opening to the adjacent room shall be made. Calculate the refrigerant density taking the volume of the room where the indoor unit is installed and the adjacent room. Install ventilation openings in the door of adjacent rooms until the refrigerant density is smaller than the maximum concentration level. ### 18. DISPOSAL REQUIREMENTS Dismantling of the unit, treatment of the refrigerant, of oil and of other parts must be done in accordance with relevant local and national legislation. ### 19. Unit specifications ### Technical specifications | EMRQ | | 8 | 10 | 12 | 14 | 16 | |-------------------------------------|--------------------------|---------------|------|------|------|------| | Casing material | painted galvanised steel | | | | | | | Dimensions (hxwxd) | 1680x1300x765 | | | | | | | Weight | (kg) | 331 | 331 | 331 | 339 | 339 | | Operation range | | | | | | | | Cooling (min./max.) (°C) | | 10/43 | | | | | | • Heating (min./max.) (°C) | | -20/20 | | | | | | Domestic hot water (°C) (min./max.) | | -20/35 | | | | | | Refrigerant type | R410A | | | | | | | Refrigerant oil | | Daphne FVC68D | | | | | | Piping connection | | | | | | | | Liquid | (mm) | 9.52 | 9.52 | 12.7 | 12.7 | 12.7 | | • Suction (m | | 19.1 | 22.2 | 28.6 | 28.6 | 28.6 | | Discharge | (mm) | 15.9 | 19.1 | 19.1 | 22.2 | 22.2 | ### Electrical specifications | EMRQ | | 8 | 10 | 12 | 14 | 16 | |-------------------|------|---------|----|-----|----|----| | Phase | | | | 3N~ | | | | Frequency | (Hz) | | | 50 | | | | Voltage (V) | | 380~415 | | | | | | Voltage range | | | | | | | | Minimum | (V) | | | 342 | | | | Maximum | (V) | | | 440 | | | | Recommended fuses | (A) | 20 | 25 | 25 | 40 | 40 | ### **NOTES** ### **NOTES** \*4PW61262-1 00000004\*