EWAD760C-XS EWAD830C-XS EWAD890C-XS EWAD990C-XS EWADC10C-XS EWADC11C-XS EWADC12C-XS EWADC13C-XS EWADH14C-XS EWADH15C-XS EWADC16C-XS EWADC17C-XS EWADC18C-XS EWADC19C-XS EWADC20C-XS EWADC21C-XS EWADC22C-XS
Cooling capacity Nom. kW 752 (1) 827 (1) 885 (1) 996.8 1,069 (1) 1,192 1,276 (1) 1,343 1,412 1,519 1,589 1,677 1,760 1,849 1,895 1,947 2,002
  Rated kW       996.8   1,192.01   1,343.01 1,412 1,519 1,589 1,677 1,760 1,849.04 1,895 1,947.02 2,002.02
Capacity control Method   Stepless Stepless Stepless Fixed Stepless Fixed Stepless Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed
  Minimum capacity % 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 7 7 7 7 7 7 7
Power input Cooling Nom. kW 237 (1) 256 (1) 282 (1) 311.3 343 (1) 367.3 404 (1) 415 451.9 485.2 509.9 540.5 568.9 598.4 619.1 648.3 678
EER 3.17 (1) 3.22 (1) 3.14 (1) 3.203 3.12 (1) 3.246 3.15 (1) 3.229 3.125 3.131 3.118 3.104 3.095 3.091 3.062 3.004 2.953
ESEER 3.77 3.92 3.81 3.91 3.84 3.99 3.86 4.05 4.04 4.06 4 3.96 3.94 3.93 4.02 3.91 3.89
IPLV 4.48 4.48 4.52 4.5 4.44 4.5 4.47 4.6 4.71 4.81 4.58 4.59 4.51 4.53 4.57 4.42 4.47
SEER       4.1   4.3   4.2 4.2 4.3 4.1 4.1 4.1 4.1 4.1 4.1 4.1
Dimensions Unit Depth mm 6,285 7,185 7,185 8,085 8,085 9,885 9,885 9,885 9,885 9,885 12,085 12,985 13,885 14,785 14,785 14,785 14,785
    Height mm 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540
    Width mm 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285
Weight Operation weight kg 6,240 6,580 6,600 7,600 7,870 8,610 8,630 9,890 9,890 9,890 12,430 12,760 13,140 13,470 13,470 13,470 13,470
  Unit kg 5,990 6,340 6,360 7,190 7,470 8,220 8,240 8,900 8,900 8,900 11,570 11,900 12,260 12,600 12,600 12,600 12,600
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Water heat exchanger Type   Single pass shell & tube Single pass shell & tube Single pass shell & tube Shell and tube Single pass shell & tube Shell and tube Single pass shell & tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube
  Water flow rate Cooling Nom. l/s 36.1 39.6 42.4 47.8 51.2 57.1 61.1 64.4 67.8 72.9 76.1 80.4 84.4 88.6 90.7 93.2 95.8
  Water pressure drop Cooling Nom. kPa 81 57 64 60.9 69 45.2 51 67.5 91.7 99.3 62.1 68.4 68 74.4 38.8 40.8 42.9
  Water volume l 251 243 243 403 403 386 386 979 979 979 850 850 871 850 850 850 850
  Insulation material   Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell
Air heat exchanger Type   High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum High efficiency fin and tube type – Copper Aluminum
Heat exchanger Indoor side       water   water   water water water water water water water water water water
  Outdoor side       Air   Air   Air Air Air Air Air Air Air Air Air Air
Fan Quantity   12 14 14 16 16 20 20 20 20 20 24 26 28 30 30 30 30
  Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
  Air flow rate Nom. l/s 64,131 74,819 74,819 85,508 85,508 106,885 106,885 106,885 106,885 106,885 128,262 138,950 149,639 160,327 160,327 160,327 160,327
    Cooling Rated m³/h       307,828.8   384,786   384,786 384,786 384,786 461,743.2 500,220 538,700.4 577,177.2 577,177.2 577,177.2 577,177.2
  Diameter mm 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800
  Speed rpm 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900
Fan motor Drive   Direct on line Direct on line Direct on line DOL Direct on line DOL Direct on line DOL DOL DOL DOL DOL DOL DOL DOL DOL DOL
  Input Cooling W 21,000 24,500 24,500 28,000 28,000 35,000 35,000 35,000 35,000 35,000 42,000 45,500 49,000 52,500 52,500 52,500 52,500
Compressor Quantity   2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
  Type   Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Driven vapour compression Asymmetric single screw compressor Driven vapour compression Asymmetric single screw compressor Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression
  Driver       Electric motor   Electric motor   Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor
  Oil Charged volume l 38 38 38 44 50 50 50 50 50 50 75 75 75 75 75 75 75
Operation range Air side Cooling Max. °CDB 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
      Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
  Water side Cooling Max. °CDB 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
      Min. °CDB -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
Sound power level Cooling Nom. dBA 100 101 101 101 102 102 103 103 103 103 103 104 104 104 104 104 104
Sound pressure level Cooling Nom. dBA 80 80 80 80 81 80 80 80 80 80 81 81 81 81 81 81 81
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Circuits Quantity   2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
  Charge kg       182   230   250 291 250 297 248 310 327 340 360 360
Charge Per circuit kg 75.0 81.0 81.0   100.0   117.5                    
  Per circuit kgCO2Eq       130,130   164,450   178,750 208,065 178,750 141,570 118,213 147,767 155,870 162,067 171,600 171,600
  Per circuit TCO2Eq 107.3 115.8 115.8 130.1 143.0 164.5 168.0 178.8 208.1 178.8 141.6 118.2 147.8 155.9 162.1 171.6 171.6
Piping connections Evaporator water inlet/outlet (OD)   168.3mm 168.3mm 168.3mm 219.1mm 219.1mm 219.1mm 219.1mm 273mm 273mm 273mm 273mm 273mm 273mm 273mm 273mm 273mm 273mm
Space cooling A Condition 35°C Pdc kW       996.8   1,192.01   1,343.01 1,412 1,519 1,589 1,677 1,760 1,849.04 1,895 1,947.02 2,002.02
    EERd       3.2   3.25   3.23 3.13 3.13 3.12 3.1 3.1 3.09 3.06 3 2.95
  B Condition 30°C Pdc kW       738.72   883.05   995.36 1,047.02 1,126.56 1,178.28 1,243.65 1,304.4 1,370.55 1,404.35 1,442.18 1,482.98
    EERd       3.7   3.7   3.7 3.7 3.8 3.6 3.6 3.6 3.6 3.6 3.6 3.5
  C Condition 25°C Pdc kW       469.7   561.3   633.0 666.2 716.9 749.3 790.9 829.6 871.7 892.6 916.7 942.7
    EERd       4.4   4.5   4.4 4.4 4.4 4.3 4.3 4.2 4.2 4.2 4.2 4.1
  D Condition 20°C Pdc kW       209.9   250.8   282.8 297.7 320.5 334.9 353.5 370.9 389.8 398.8 409.6 421.2
    EERd       4.7   4.7   4.7 4.8 4.9 5.0 5.0 5.0 4.9 5.0 5.0 4.9
  ηs,c %       161.388   167.1   165.42 164.232 167.94 161.736 161.358 161.32 161.7460 162.48 161.22 161.436
General Supplier/Manufacturer details Name and address       Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy   Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy   Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy
LW(A) Sound power level (according to EN14825) dB(A)       101   102   103 103 103 103 104 104 104 104 104 104
Cooling Cdc (Degradation cooling)       0.9   0.9   0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Standard rating conditions used       Low temperature application   Low temperature application   Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application
Power consumption in other than active mode Crankcase heater mode PCK W       0.250   0.250   0.250 0.250 0.250 0.380 0.380 0.380 0.380 0.380 0.380 0.380
  Off mode POFF W       0.000   0.000   0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
  Standby mode Cooling PSB W       0.100   0.100   0.100 0.100 0.100 0.150 0.150 0.150 0.150 0.150 0.150 0.150
  Thermostat-off mode PTO Cooling W       0.550   0.590   0.700 0.770 0.760 0.760 0.760 0.740 0.740 0.760 0.760 0.760
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 618 657 657 923 970 1,029 1,029 1,029 1,072 1,085 1,268 1,328 1,387 1,387 1,430 1,472 1,486
  Running current Cooling Nom. A 387 423 463 511 559 607 667 686 731 778 835 885 934.0 984 1,018 1,059 1,100
    Max A 510 561 605 672 731 811 875 875 929 982 1,096 1,168 1,241 1,313 1,366 1,419 1,473
  Max unit current for wires sizing A 556 612 660 733 797 884 955 955 1,013 1,072 1,196 1,275 1,354 1,432 1,491 1,549 1,608
Fans Nominal running current (RLA) A 48 56 56 64 64 80 80 80 80 80 96 104 112 120 120 120 120
Compressor Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
  Maximum running current A 231 231 274 274 333 333 398 398 398 451 333 333 398 398 398 451 451
  Starting method   Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta
Compressor 2 Maximum running current A 231 274 274 333 333 398 398 398 451 451 333 333 398 398 398 451 451
Compressor 3 Maximum running current A                     333 398 333 398 451 398 451
Notes Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511
  Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units
  Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 %
  Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage.
  Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water
  For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.