Specifications Table for EWYT-B-XR

EWYT085B-XRA1 EWYT115B-XRA1 EWYT135B-XRA1 EWYT175B-XRA1 EWYT215B-XRA1 EWYT215B-XRA2 EWYT235B-XRA2 EWYT265B-XRA2 EWYT310B-XRA2 EWYT350B-XRA2 EWYT400B-XRA2 EWYT440B-XRA2 EWYT500B-XRA2 EWYT560B-XRA2 EWYT600B-XRA2 EWYT630B-XRA2 EWYT650B-XRA2
Sound pressure level Cooling Nom. dBA 59 63 65 67 68 65 65 66 64 64 64.8   65.4 65.5 65.8 66 70.5
Compressor Type   Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor   Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor
  Starting method   Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line   Direct on line Direct on line Direct on line Direct on line   Direct on line Direct on line Direct on line Direct on line Direct on line
  Quantity   2 2 2 2 2 4 4 4 4 4 4   5 6 6 6 6
Weight Operation weight kg 1,121 1,181 1,261 1,446 1,626 2,065 2,365 2,415 3,175 3,275 3,845   4,428 4,526 4,990 5,090 5,090
  Unit kg 1,110 1,170 1,250 1,430 1,610 2,030 2,330 2,380 3,140 3,240 3,810   4,366 4,456 4,920 5,020 5,020
Air heat exchanger Type   High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type   High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type
EER 2.98 2.9 2.92 2.86 2.79 2.97 3 2.93 2.96 2.95 2.93   2.85 2.81 2.8 2.8 2.94
Refrigerant Type   R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32   R-32 R-32 R-32 R-32 R-32
  Circuits Quantity               2
  Charge kg 17.4 18.4 21.5 30 40 44.6 50 53.4 54.4 62 71.5   89 93 103.4 106 109
Cooling capacity Nom. kW 79 103 124 164 203 204 227 247 282 321 364   458 507 548 583 600
Water heat exchanger Water volume l             35
  Type               Plate heat exchanger
Power input Cooling Nom. kW             75.7
  Heating Nom. kW             68.99
Sound power level Cooling Nom. dBA 77 81 83 85 87 84 85 86 84 84 85.2   86.2 86.3 86.9 87.1 91.6
COP             3.443
Dimensions Unit Width mm 1,195 1,195 1,195 1,195 1,195 1,195 1,195 1,195 2,282 2,282 2,282   2,282 2,282 2,282 2,282 2,282
    Depth mm 2,825 3,425 3,425 4,025 4,625 5,550 6,150 6,150 4,125 4,125 5,025   5,925 5,925 6,825 6,825 6,825
    Height mm 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 2,514 2,514 2,514   2,514 2,514 2,514 2,514 2,514
Capacity control Minimum capacity % 50 38 50 38 50 19 17 25 22 19 17   22 19 18 17 17
  Method   Step Step Step Step Step Step Step Step Step Step Step   Step Step Step Step Step
Fan Air flow rate Nom. l/s             22,128
  Speed rpm             1,108
Heating capacity Nom. kW             237.57
Compressor Starting method               Direct on line
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~   3~ 3~ 3~ 3~ 3~
  Voltage range Max. % 10 10 10 10 10 10   10 10 10 10   10 10 10 10 10
    Min. % -10 -10 -10 -10 -10 -10   -10 -10 -10 -10   -10 -10 -10 -10 -10
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50   50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400   400 400 400 400 400
Unit Max unit current for wires sizing A 77.0 96.0 111.0 146.0 182.0 187.0   221.0 264.0 301.0 343.0   435.0 485.0 527.0 560.0 560.0
  Starting current Max A 213.0 329.0 343.0 465.0 497.0 412.0   443.0 572.0 606.0 644.0   728.0 773.0 811.0 841.0 841.0
  Running current Cooling Nom. A 53.0 65.0 75.0 100.0 124.0 123.0   145.0 169.0 192.0 214.0   276.0 315.0 339.0 360.0 353.0
    Max A 70.0 87.0 101.0 133.0 165.0 170.0   201.0 240.0 274.0 312.0   395.0 441.0 479.0 509.0 509.0
Notes (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018
  (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018
  (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) N
  (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter
  (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for i
  (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
  (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
  (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options.
  (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only.
  (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water
  (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced.
  (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current
  (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current.
  (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book
  (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data.
Refrigerant Circuits Quantity   1 1 1 1 1 2   2 2 2 2   2 2 2 2 2
Fan motor Drive   VFD driven VFD driven VFD driven VFD driven VFD driven VFD driven   VFD driven VFD driven VFD driven VFD driven   VFD driven VFD driven VFD driven VFD driven VFD driven
IPLV 4.73 4.73 4.67 4.65 4.67 4.86   4.62 4.92 5.12 5.26   5.34 5.32 5.22 5.23 5.19
Piping connections Evaporator water inlet/outlet (OD)   88.9 88.9 88.9 88.9 88.9 88.9   88.9 88.9 88.9 88.9   88.9 88.9 88.9 88.9 88.9
SEER 4.21 4.37 4.21 4.41 4.16 4.42   4.13 4.74 4.8 4.82   4.92 4.89 4.83 4.79 4.72
Power input Cooling Nom. kW 26.6 35.4 42.6 57.4 72.9 68.8   84.4 95.2 109 124   160 180 196 208 203
Casing Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
  Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white   Ivory white Ivory white Ivory white Ivory white   Ivory white Ivory white Ivory white Ivory white Ivory white
Fan Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller   Direct propeller Direct propeller Direct propeller Direct propeller   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
  Quantity   6 8 8 10 12 14   16 7 8 10   12 12 14 14 14